Supporting Information for:

Fragile magnetic ordering between robust 2D-ferrimagnets in the AFe₃(SeO₃)₂F₆ (A=K, Rb, Cs) series

Haoming Yang,^a Olivier Mentré,^{b,*}Tianyu Zhu, ^a Claire Minaud,^bClemens Ritter,^c Xinan Zhang,^a Yong Jin,^a and Minfeng Lü,^{a,*}

^aSchool of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, Perople's Republic of China

^bUniversité Lille Nord de France, UMR 8181 CNRS, Unité de Catalyse et de Chimie du Solide (UCCS USTL), F-59655 Villeneuve d'Ascq, France.

^cInstitut Laue-Langevin, Avenue des Martyrs 71, Grenoble Cedex, France

*To whom correspondence should be addressed

E-mail address: m.f.lv@hotmail.com (Minfeng Lü) olivier.mentre@univ-lille.fr (Olivier Mentré)

Figure S1. Calculated and observed powder X-ray diffraction patterns for KFe₃(SeO₃)₂F₆.

Figure S2. Calculated and observed powder X-ray diffraction patterns for RbFe₃(SeO₃)₂F₆.

Figure S3. The corresponding EDX spectra for $KFe_3(SeO_3)_2F_6$.

Figure S4. The corresponding EDX spectra for $RbFe_3(SeO_3)_2F_6$.

Figure S5. Infrared spectra of AFe₃(SeO₃)₂F₆ (A=K, and Rb).

Figure S6. TGA diagram for $KFe_3(SeO_3)_2F_6$.

Figure S7. TGA diagram for RbFe₃(SeO₃)₂F₆.

Figure S8. the three configurations and their energy used by DFT +U with polarized spins (white and black Fe atoms represent up and down spins). n=5 electron per site for Fe^{3+} , E0 is the energy of the system besides magnetic perturbations.

Figure S9. 2D $[Fe_3(SeO_3)_2F_6]^-$ block along different axis, where Fe-F-F-Fe super-exchange paths (a) and Fe-F-F-Fe dihedral angles (b) are highlighted respectively.

Figure S10. Field dependence of Magnetization for $KFe_3(SeO_3)_2F_6$ between 280K and 400K. Figure S11. M(H) and dM/dH curves at different low Field for $AFe_3(SeO_3)_2F_6$ (A=K(a,b,c,) Rb (d,e,f)) Figure S12. (a) The temperature dependence of C_p/T under 0 Oe in AFe₃(SeO₃)₂F₆ (A= K,Rb), (b) The temperature dependence of C_p under 10 Oe in AFe₃(SeO₃)₂F₆ (A= K,Rb). Figure S13. (a) The isothermal initial magnetization around T_c for RbFe₃F₆(SeO₃)₂, (b) the Arrott plot of M² vs. H/M.

Figure S14. The isotherms of $M^{1/\beta}$ vs. $(H/M)^{1/\gamma}$ with parameters of (a)3D-XY model, (b) 3D-Heisenberg model, (c)3D-tricritical mean field model, (d) 3D-Ising model.

Table S1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters of $KFe_3(SeO_3)_2F_6$.

Table S2. Harmonic displacement parameters obtained for the compound KFe₃(SeO₃)₂F₆.

Table S3.Bond lengths (Å) and Band angles (degrees) of KFe₃(SeO₃)₂F₆.

Table S4. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters of $RbFe_3(SeO_3)_2F_6$.

Table S5. Harmonic displacement parameters obtained for the compound $RbFe_3(SeO_3)_2F_6$. Table S6. Bond lengths (Å) and Band angles (degrees) of $RbFe_3(SeO_3)_2F_6$.

Table S7. BVS of AFe₃(SeO₃)₂F₆ (A=K, and Rb).

Figure S1. Calculated and observed powder X-ray diffraction patterns for KFe₃(SeO₃)₂F₆.

Figure S2. Calculated and observed powder X-ray diffraction patterns for RbFe₃(SeO₃)₂F₆.

Figure S3. The corresponding EDX spectra for $KFe_3(SeO_3)_2F_6$.

Figure S4.The corresponding EDX spectra for $RbFe_3(SeO_3)_2F_{6.}$

Figure S5. Infrared spectra of $AFe_3(SeO_3)_2F_6$ (A=K, and Rb).

Figure S6. TGA diagram for KFe₃(SeO₃)₂F₆.

Figure S7. TGA diagram for RbFe₃(SeO₃)₂F₆.

Figure S8. the three configurations and their energy used by DFT +U with polarized spins (white and black Fe atoms represent up and down spins). n=5 electron per site for Fe^{3+} , E0 is the energy of the system besides magnetic perturbations.

Figure S9. 2D $[Fe_3(SeO_3)_2F_6]^-$ block along different axis, where Fe-F-F-Fe super-exchange paths (a) and Fe-F-F-Fe dihedral angles (b) are highlighted respectively.

Figure S10. Field dependence of Magnetization for $KFe_3(SeO_3)_2F_6$ between 280K and 400K.

Figure S11. M(H) and dM/dH curves at different low Field for $AFe_3(SeO_3)_2F_6(A=K(a,b,c,B) (d,e,f))$

Figure S12. (a) The temperature dependence of C_p/T under 0 Oe and 1T in AFe₃(SeO₃)₂F₆ (A=K,Rb), (b) The temperature dependence of C_p under 0 Oe in AFe₃(SeO₃)₂F₆ (A=K,Rb).

Figure S13 (a) The isothermal initial magnetization around T_c for RbFe₃F₆(SeO₃)₂, (b) the Arrott plot of M² vs. H/M.

Figure S14 The isotherms of $M^{1/\beta}$ vs. $(H/M)^{1/\gamma}$ with parameters of (a)3D-XY model, (b) 3D-Heisenberg model, (c)3D-tricritical mean field model, (d) 3D-Ising model.

	Wyck.	X	У	Z	Uiso*/Ueq	Occ.(<1)
K1	1b	0	0	0.5	0.0360(12)	1
Fe1	2d	0.3333	0.6667	0.23621(13)	0.0075(4)	1
Fe2	1a	0	0	0	0.0052(5)	1
Se1	2d	0.6667	0.3333	0.25824(9)	0.0083(3)	1
F1	6i	0.1663(3)	0.3327(7)	0.1113(3)	0.0190(8)	1
01	6i	0.5077(5)	0.4923(5)	0.3387(4)	0.0182(9)	1

Table S1: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters of $KFe_3(SeO_3)_2F_6$.

	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
K1	0.0418(15)	0.0418(15)	0.025(2)	0.0209(8)	0	0
Fe1	0.0067(5)	0.0067(5)	0.0093(7)	0.0033(2)	0	0
Fe2	0.0052(6)	0.0052(6)	0.0053(9)	0.0026(3)	0	0
Se1	0.0080(4)	0.0080(4)	0.0091(5)	0.00398(18)	0	0

Table S2. Harmonic displacement parameters obtained for the compound KFe₃(SeO₃)₂F₆.

Table S3. Bond lengths (Å) and Band angles (degrees) of $KFe_3(SeO_3)_2F_6$.

Atom1	Atom2	distances	Band angles	degrees
K1	O1×12	3.156(3)	F1-Fe1-F1×3	85.35(12)
Fe1	F1×3	2.005(3)	F1-Fe1-O1×6	89.89(14)
	O1×3	1.933(3)	F1-Fe1-O1×3	173.52(16)
Fe2	F1×6	1.919(3)	O1-Fe1-O1×3	94.50(15)
Se1	O1×3	1.697(3)	F1-Fe2-F1×6	89.76(12)
			F1-Fe2-F1×6	90.24(10)
			F1-Fe2-F1×3	180.0(5)
			O1-Se1-O1×3	99.37(16)
			Fe1-F1-Fe2	176.95(19)

Table S4: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters of $RbFe_3(SeO_3)_2F_6$.

	Wyck.	Х	у	Z	Uiso*/Ueq	Occ.(<1)
Rb1	1a	0	0	0.5	0.0236(5)	1
Fe1	2d	0.3333	0.6667	0.23188(11)	0.0082(4)	1
Fe2	1b	0	0	0	0.0070(5)	1
Se1	2d	0.6667	0.3333	0.25402(8)	0.0099(3)	1
F1	6i	0.1664(4)	0.3329(7)	0.1088(3)	0.0183(8)	1
01	6i	0.5074(5)	0.4926(5)	0.3329(3)	0.0130(9)	1

Table S5. Harmonic displacement parameters obtained for the compound RbFe₃(SeO₃)₂F₆.

	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Rb1	0.0247(6)	0.0247(6)	0.0215(7)	0.0123(3)	0.00000	0.00000
Fe1	0.0072(5)	0.0072(5)	0.0100(7)	0.0036(2)	0.00000	0.00000
Fe2	0.0069(6)	0.0069(6)	0.0069(8)	0.0034(3)	0.00000	0.00000
Se1	0.0092(4)	0.0092(4)	0.0113(5)	0.00459(18)	0.00000	0.00000

Atom1	Atom2	distances	Band angles	degrees
Rb1	O1×12	3.210(2)	F1-Fe1-F1×3	85.42(12)
Fe1	F1×3	2.011(3)	F1-Fe1-O1×6	89.85(13)
	O1×3	1.937(3)	F1-Fe1-O1×3	173.56(14)
Fe2	F1×6	1.920(3)	O1-Fe1-O1×3	94.52(13)
Se1	O1×3	1.703(3)	F1-Fe2-F1×6	90.18(12)
			F1-Fe2-F1×6	89.82(9)
			F1-Fe2-F1×3	180.0(5)
			O1-Se1-O1×3	99.65(15)
			Fe1-F1-Fe2	176.69(18)

Table S6. Bond lengths (Å) and Band angles (degrees) of $RbFe_3(SeO_3)_2F_6$.

Table S7. BVS of AFe₃(SeO₃)₂F₆ (A=K, and Rb).

KFe ₃ (SeO ₃) ₂ F ₆				RbFe ₃ (SeO ₃) ₂ F ₆			
Atom	V _{K*}	V _{Fe*}	V _{Se*}	Atom	V _{Rb*}	V _{Fe*}	V _{Se*}
K(1)	0.753(2)			Rb(1)	0.928(2)		
Fe(1)		3.12(1)		Fe(1)		3.08(1)	
Fe(2)		3.14(1)		Fe(2)		3.12(1)	
Se(1)			4.08(2)	Se(1)			4.02(2)
Atom	$V_{F^{\star}}$	V _{O*}		Atom	$V_{F^{\star}}$	$V_{O^{\star}}$	
F(1)	-0.94(1)			F(1)	-0.93(1)		
O(1)		-2.11(1)		O(1)		-2.11(2)	

* (R, b) parameters being for K⁺-O (2.132, 0.37), K⁺-F (1.992, 0.37), Rb⁺-O (2.263, 0.37), Rb ⁺-F (2.16, 0.37), Fe³⁺-O (1.759, 0.37), Fe³⁺-F (1.679, 0.37), and Se⁶⁺-O (1.788, 0.37)