Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Systematic study on optimization of bis(N,N-diethyl)aniline based

NLO chromophore via stronger electron acceptor, extended π -

conjugation and isolation groups

Shuhui Bo,* ^{a,b}, Ya Li, ^a Tongtong Liu,^a Fuyang Huo,^a Hongyan Xiao,^b Hua Zhang,^{*,b,c} and Zhuo Chen^{*,b}

^a Optoelectronics Research Centre, School of Science, Minzu University of China, Beijing, 100081, PR China. E-mail: boshuhui@muc.edu.cn, boshuhui@mail.ipc.ac.cn.

^b Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China. E-mail: chenzhuo@mail.ipc.ac.cn.

^c Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China. E-mail: zhanghua@iphy.ac.cn.

3. ¹H NMR spectra of the new chromophore F.

4. ¹³C NMR spectra of the new chromophore F.

5. The solvatochromic shifts in eV and the extinction coefficients in UV-Vis spectra.

Table S1. The solvatochromic shifts in eV and values of the extinction coefficients.

Compound	Properties	dioxane	THF	CHCl ₃	acetone	acetonitrile	DMF
	$\Delta E/eV$	1.89	1.85	1.74	1.85	1.86	1.82
A	$\epsilon/10^4 M^{\text{-1}} \text{cm}^{\text{-1}}$	4.19	3.71	4.41	3.72	3.81	3.22
В	$\Delta E/eV$	1.83	1.77	1.69	1.78	1.77	1.72
	$\epsilon/10^4 M^{-1} cm^{-1}$	5.48	5.05	6.09	5.47	5.15	4.42
С	$\Delta E/eV$	1.77	1.72	1.61	1.73	1.73	1.69
	$\epsilon/10^4 M^{-1} cm^{-1}$	5.01	5.45	5.63	5.46	5.45	4.99
D	$\Delta E/eV$	1.66	1.58	1.51	1.55		

	$\epsilon/10^{4} M^{-1} cm^{-1}$	6.01	5.85	7.67	5.63		
E	$\Delta E/eV$	1.61	1.53	1.49	1.48		
E	$\epsilon/10^4 M^{-1} cm^{-1}$	6.59	6.95	8.01	7.17		
Б	$\Delta E/eV$	1.56	1.47	1.39	1.45	1.46	1.34
F	$\epsilon/10^4 M^{\text{-1}} \text{cm}^{\text{-1}}$	5.49	5.63	5.87	5.22	5.09	0.52

6. The data of β_i and β_{tot} for the chromophores.

			1 :	1 101		1							
Comp	β_{xxx}	β_{xyy}	β_{xzz}	β_{yyy}	β_{yzz}	β_{yxx}	β_{zzz}	β_{zxx}	β_{zyy}	β_{x}	β_y	β_z	β_{tot}
×10 ⁻³⁰ esu													
A	-36911.64	792.9	110.3	-1132	34.47	-690.0	-125.1	-523.1	19.28	311.1	15.44	5.434	311.5
В	28428.406	-410.7	9.907	44.042	8.270	1963.2	-90.54	742.5	-254.0	242.1	17.41	3.438	242.8
С	38351.344	4658	-130.6	-1104	-9.21	-12943	-119.6	-1121	-111.4	370.4	121.4	11.68	390.0
D	42411.556	-322.3	-68.09	-1490	12.25	3696.2	194.1	1570	-131.9	363.0	19.17	14.10	363.8
Е	-41794.03	636.8	-57.78	551.99	12.41	-2428	178.9	-769.4	286.8	356.1	16.10	2.623	356.4
F	58006.952	4026	29.67	206.45	-21.3	-14432	-62.84	-3137	-352.5	536.2	123.1	25.51	551.0

Table S2. The data of β_i and β_{tot} for the chromophores.

7. The values of glass transition temperature of the chromophore doped APC.

Figure S1. The DSC curves of the 25wt% chromophore doped APC

Figure S2. The DSC curves of the 35wt% chromophore doped APC

Table S3. The values	s of glass transition	n temperature (T _c) of the chromo	phore doped APC
-	G		<i></i>	

Chromophore	А	В	С	D	Е	F
T _g (25wt%)	145.9	139.5	138.8	143.3	136.9	134.3
T _g (35wt%)	134.3	128.6	127.3	129.2	121.9	118.5