Supporting Information

3D embroidered ball-like α-Fe₂O₃ synthesised by microwave hydrothermal as sulfur immobilizer for high performance Li-S batteries

Juan Li^{a, b}, Youlong Xu^{a, b, *}, Cheng He^c, Jiping Zhao^{a, b}, Yu Liang^c

^aElectronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China

^bShanxi Engineering Research Center of Advanced Energy Materials & Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China

^cState Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Fig. S1The N_2 adsorption isotherm of α -Fe₂O₃/GO-25 composite.

Fig. S2 XRD patterns.

Sample	Ratio	Sample	Ratio
α-Fe ₂ O ₃ -S-20	0.85	α-Fe ₂ O ₃ /GO-S-20	1.03
α-Fe ₂ O ₃ -S-25	0.87	α-Fe ₂ O ₃ /GO-S-25	1.08
α-Fe ₂ O ₃ -S-30	0.88	α-Fe ₂ O ₃ /GO-S-30	1.09

Fig. S3 XPS survey spectra of $\alpha\text{-}Fe_2O_3/GO\text{-}25$ and $\alpha\text{-}Fe_2O_3/GO\text{-}S\text{-}25$ composites.

Fig. S4 Galvanostatic charge/discharge profiles of α -Fe₂O₃-S-25 after 200 cycles.

Fig. S5 Cycling performance of α -Fe₂O₃/GO-S-25 electrode at 2 C after 500 cycles.

Fig. S6 The correspond fitted lines of α -Fe₂O₃-S-25 electrodes at different scan rate.

Fig. S7 The equivalent circuit diagram of α -Fe₂O₃/GO-S-25 electrode.

Sample	Rct (Ω)	Sample	Rct (Ω)
α-Fe ₂ O ₃ -S-10	87.5	α-Fe ₂ O ₃ /GO-S-10	58.3
α-Fe ₂ O ₃ -S-20	79.0	α-Fe ₂ O ₃ /GO-S-20	42.8
α-Fe ₂ O ₃ -S-25	63.1	α-Fe ₂ O ₃ /GO-S-25	17.2
α-Fe ₂ O ₃ -S-30	66.2	α-Fe ₂ O ₃ /GO-S-30	21.9

Table S2. Rct (Ω) values of different electrodes.

Fig. S8 The calculated D_{Li^+} values obtained from EIS tests for $\alpha\text{-}Fe_2O_3\text{-}S$ and $\alpha\text{-}Fe_2O_3/\text{GO-S}$ electrodes.