Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Polarization-Sensitive Photodetection in A Two-Dimensional

Interlayer-Multiple-Cation Hybrid Perovskite Bulk Single Crystal

Qin Chen,^[a, b] Ziyang Wang,^[b] Yipeng Fan,^[a, b] Zhou Li,^[a, b] Shuhua Zhang,*^[a] Chengmin Ji,*^[b, c] Junhua Luo*^[b, c]

[a] College of Chemistry and Bioengineering (Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials), Guilin University of Technology, Guilin, Guangxi,541004, P. R. China. E-mail: zsh720108@163.com

[b] State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. E-mail: cmji@fjirsm.ac cn, jhluo@fjirsm.ac.cn;

[c] University of Chinese Academy of Sciences, Beijing, 100049, China

*To whom correspondence should be addressed. <u>zsh720108@163.com</u> <u>cmji@fjirsm.ac.cn</u> <u>jhluo@fjirsm.ac.cn</u>

Figure S1. Thermogravimetric analysis of synthesized Cs₂[C(NH₂)₃]Pb₂Br₇

Figure S2. The simulated and experimental PXRD patterns of Cs₂[C(NH₂)₃]Pb₂Br₇

Figure S3. The IR spectrum of Cs₂[C(NH₂)₃]Pb₂Br₇

Figure S4. The PXRD patterns of single crystal Cs₂[C(NH₂)₃]Pb₂Br₇

Figure S5. Atom force microscope test of single crystal Cs₂[C(NH₂)₃]Pb₂Br₇

Figure S6. Hydrogen bonds in the compound Cs₂[C(NH₂)₃]Pb₂Br₇

Figure S7. PDOS of the compound Cs₂[C(NH₂)₃]Pb₂Br₇

Figure S8. The distance between quantum wells

-

Table S1. Crystal Data and Structure Refinement for Cs ₂ [C(NH ₂) ₃]Pb ₂ Br ₇			
Empirical formula	$CH_6Br_7Cs_2N_3Pb_2$		
Formula weight	1299.66		
Temperature/K	200.00		
Space group	Cmmm		
a/Å	5.99490(10)		
b/Å	28.7131(9)		
c/Å	11.5805(3)		
$\alpha/^{\circ}$	90		
β/°	90		
$\gamma/^{\circ}$	90		
Volume/ Å ³	1993.38(9)		
Z	4		
$\rho_{calc}g/cm^3$	4.331		
μ/mm^{-1}	34.481		
F(000)	2208.0		
Radiation	MoKa ($\lambda = 0.71073$)		
2θ range for data collection/°	4.518 to 55.052		
Index ranges	$-7 \le h \le 7, -37 \le k \le 32, -15 \le l \le 14$		
Reflections collected	7319		

Independent reflections	1332 [Rint = 0.0404, Rsigma = 0.0300]
Data/restraints/parameters	1332/0/55
Goodness-of-fit on F ²	1.259
Final R indexes [I>= 2σ (I)]	R1 = 0.0460, wR2 = 0.1167
Largest diff. peak/hole / e Å ⁻³	2.05/-5.45

Table S2. The Pb -	Br bond lengths of	$Cs_2[C(NH_2)_3]Pb_2Br_7$

Bond	(Å)	Bond	(Å)
Pb(1) - Br(5)	2.9759(15)	$Pb(1) - Br(8)^1$	3.00339(15)
Pb(1) - Br(6)	2.9477(7)	Pb(1) - Br(8)	3.00339(15)
Pb(1) - Br(7)	2.9795(7)	Pb(1) - Br(9)	2.9465(6)

Table S3. The bond angles of Cs₂[C(NH₂)₃]Pb₂Br₇

Angle/°	Bond	Angle/°
178.91(6)	Br(9) - Pb(1) - Br(7)	175.53(8)
92.80(4)	Br(9) - Pb(1) - Br(7)	86.92(8)
92.80(4)	Br(9) - Pb(1) - Br(7)	92.05(4)
90.30(6)	Br(9) - Pb(1) - Br(7)	92.05(4)
88.61(7)	Pb(1) - Br(1) - Pb(7)	154.43(11)
87.72(4)	Pb(1) - Br(1) - Pb(7)	157.23(11)
87.72(4)	Pb(1) - Br(1) - Pb(7)	172.79(8)
87.15(4)	$Pb(1)^{5} - Br(1) - Pb(7)$	163.38(13)
87.15(4)	N(2) - C00C - N(7)	118.8(11)
172.79(8)	$N(2)^{5} - C00C - N(7)$	118.8(11)
94.17(7)	$N(2)^{5} - C00C - N(7)$	122(2)
	Angle/° 178.91(6) 92.80(4) 90.30(6) 88.61(7) 87.72(4) 87.72(4) 87.15(4) 87.15(4) 172.79(8) 94.17(7)	Angle/°Bond $178.91(6)$ $Br(9) - Pb(1) - Br(7)$ $92.80(4)$ $Br(9) - Pb(1) - Br(7)$ $92.80(4)$ $Br(9) - Pb(1) - Br(7)$ $90.30(6)$ $Br(9) - Pb(1) - Br(7)$ $88.61(7)$ $Pb(1) - Br(1) - Pb(7)$ $87.72(4)$ $Pb(1) - Br(1) - Pb(7)$ $87.72(4)$ $Pb(1) - Br(1) - Pb(7)$ $87.15(4)$ $Pb(1)^5 - Br(1) - Pb(7)$ $87.15(4)$ $N(2) - C00C - N(7)$ $172.79(8)$ $N(2)^5 - C00C - N(7)$ $94.17(7)$ $N(2)^5 - C00C - N(7)$

¹1+X,+Y,+Z; ²+X,+Y,1-Z; ³2-X,1-Y,+Z; ⁴-1+X,+Y,+Z; ⁵+X,+Y,-Z

Experiment

Synthesis and Crystal Growth: To obtain the single crystal of 1, cesium bromide (CsBr, 5mmol), guanidinium carbonate (G2CO3, 15mmol) and lead(II) bromide (PbBr2, 10mmol) were dissolved in 50mL of aqueous HBr (48% by mass), strong gas evolution was observed, and a yellow precipitate formed. Large-size crystals were grown through temperature cooling method..

Powder X-Ray Diffraction Analysis: Powder X-Ray Diffractometer (PXRD) patterns were conducted with the MiniFlex II X-ray diffractometer to examine the phase purity of 1. The experimental PXRD patterns were recorded in the 2theta (2θ) range of 5°–50° with a step size of 5°. The experimental PXRD patterns was obtained at room

temperature matching fairly well with the calculated data based on the single-crystal structure, which solidly confirmed the purity of the crystals of 1 (Figure S2).

Crystal Structure Determination: Single-crystal X-ray diffraction was conducted via Bruker D8 Quesr/Venture diffractometer with Mo K α radiation ($\lambda = 0.77$ Å). Crystal structure of Cs2[C(NH2)3]Pb2Br7 was solved through direct method and was refined via the full-matrix least squares refinements on F2 using SHELXLTL software package. Crystal data and structure information are published in Tables S1–S3, Supporting Information.

Ultraviolet-visible (UV-vis) Absorption Spectrum: UV-vis diffuse reflectance spectroscopies of desired materials were performed at room temperature on Perkin-Elmer Lambda 950 UV-vis-IR spectrophotometer in a variable wavelength range between 300 to 700 nm. The BaSO4 was used as the 100 % reflectance reference, and the powdered crystals were used for the measurements. Near the cut-off of the optical transmission, the band gap, the absorption and the wave frequency obey the equation:

 $\alpha hv = A(hv - Eg) n/2$

Where α , v, A, and Eg are absorption coefficient, light frequency, proportionality constant, and band gap, respectively.

[CCDC 2115841 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.]