Overcome energy loss of thermally activated delayedfluorescence sensitized-OLEDs by developing fluorescence dopantwith a small singlet-triplet energy splittingXinye Wang ${ }^{\dagger}$, Yifan Zhang ${ }^{\dagger}$, Ze Yu, Yuan Wu, Dongdong Wang*, Chuanming Wu, HuiliMa*, Shuya Ning, Hua Dong and Zhaoxin Wu
Electronic Supplementary Information
Contents
Section 1: Computational details S1
Section 2: Synthesis details S1
Section 3: Supplementary figures S4
Figure S1 The TGA, DSC and CV curves of the 67dTPA-FQ and 267tTPA-FQ S4
Section 4: ${ }^{1} \mathrm{H}$ NMR and HRMS spectra S5
Section 5: Reference S7

Section 1:Computational details

Molecular geometry optimizations were performed for the ground (S0) and excited (S1) states at the level of (TD)B3LYP/M062X. Based on the S1-geometry, the excitation energies and natural transition orbitals (NTO) of the low-lying excited states were evaluated at the TD-B3LYP/ M062X level. All calculations were performed by using Gaussian 09 program1. The spin-orbit coupling matrix elements of singlet and triplet excited states were carried out based on the first-order Douglas-Kroll-Hess-like spin-orbit operator derived from the exact two-component (X2C) Hamiltonian by using Beijing Density Function (BDF) program. ${ }^{2-5}$

Section 2:

Synthesis of materials

All reagents were used without further purification. The 1HNMR spectra were recorded on Bruker Avance 400 MHz spectrometers and HRMS experiments were carried out on a Thermo Scientific LTQ Orbitrap Discovery (Bremen, Germany).

Synthesis of intermediate (1a and 1b)

6,7-dibromo-2,3-dichloroquinoxaline ($0.6 \mathrm{~g}, 1.68 \mathrm{mmol}$) was dissolved in $\mathrm{MeCN}(20 \mathrm{~mL})$, then $\mathrm{Pd}(\mathrm{PPh} 3) 2 \mathrm{Cl} 2(5$ $\mathrm{mol}-\%)$ and $\mathrm{CuI}(5 \mathrm{~mol}-\%)$ were added. The reaction flask was then sealed and flushed with nitrogen. Then, Et3N (2.5 equiv.) and ethynylbenzene ($0.18 \mathrm{~g}, 1.75 \mathrm{mmol}$)/4-ethynyl- N, N-diphenylaniline $(0.29 \mathrm{~g}, 1.75 \mathrm{mmol})$ were added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 8 h . After the first coupling reaction was complete, TFA (35 mL) was added. The reaction mixture was then stirred at $60^{\circ} \mathrm{C}$ until TLC revealed complete conversion of the intermediate into the final product. The mixture was then cooled, diluted with H 2 O and filtered. The residue was purified by silica gel column chromatography $(\mathrm{CH} 2 \mathrm{Cl} 2$ / petroleum ether) to give the corresponding product.

1a ($0.6 \mathrm{~g}, 88 \%$): 1HNMR (400MHz, CDCl3) $\delta(\mathrm{ppm}): 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta(\mathrm{ppm}): 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}$, $1 \mathrm{H}), 8.17-8.10(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 3 \mathrm{H})$.
$1 \mathrm{~b}(0.8 \mathrm{~g}, 83 \%): 1 \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta(\mathrm{ppm}): 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta(\mathrm{ppm}): 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}$, $1 \mathrm{H}), 8.01-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H})$.

Synthesis of 67dTPA-FQ and 267tTPA-FQ

The compound 1a $(0.6 \mathrm{~g}, 1.49 \mathrm{mmol}) / 1 \mathrm{~b}(0.85 \mathrm{~g}, 1.49 \mathrm{mmol})$, (4-(diphenylamino)phenyl)boronic acid (1.07 g , $3.71 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.23 \mathrm{~g}, 8.91 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.086 \mathrm{~g}, 0.074 \mathrm{mmol})$ were added to 100 ml dioxane $/ \mathrm{H} 2 \mathrm{O}$ (4:1) mixed solvent. Then the reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere until TLC revealed complete conversion of the starting material. The mixture was cooled, diluted with H 2 O and filtered. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether) to gain the product.

67dTPA-FQ($0.88 \mathrm{~g}, 81 \%): 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta(\mathrm{ppm}): 8.16-8.12(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.92$ $(\mathrm{s}, 1 \mathrm{H}), 7.66-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.14(\mathrm{dd}, \mathrm{J}=8.4,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=15.2,7.6 \mathrm{~Hz}, 13 \mathrm{H}), 6.90$ (dd, $\mathrm{J}=8.6,2.6 \mathrm{~Hz}, 4 \mathrm{H}) ; 13 \mathrm{CNMR}(101 \mathrm{MHz}$, Chloroform-d) $\delta(\mathrm{ppm}): 163.93,154.96,147.68,147.07,147.02$, $144.45,142.30,141.86,141.46,138.24,134.47,134.40,131.39,130.93,129.42,129.31,129.17,129.13,128.66$, $126.29,124.68,123.16,123.13,122.84,122.78,100.99 . \operatorname{HRMS}(E S I)$ calcd for $\mathrm{C} 46 \mathrm{H} 32 \mathrm{~N} 4 \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 733.29601$, found 733.29594.

267tTPA-FQ(1.0g, 79\%): 1H NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.99-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H})$, 7.41-7.34 (m, 4H), $7.25(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.20-7.07(\mathrm{~m}, 10 \mathrm{H}), 7.06-6.96(\mathrm{~m}, 14 \mathrm{H}), 6.89(\mathrm{dd}, \mathrm{J}=8.7,2.3 \mathrm{~Hz}, 4 \mathrm{H}) ;$ 13C NMR (101 MHz, Chloroform-d) $\delta(\mathrm{ppm}): 147.68,146.96,146.58,141.74,134.53,130.94,129.77,129.42$, 129.11, 127.57, 125.92, 124.72, 124.65, 123.13, 123.10, 122.85, 122.78, 121.12.HRMS (ESI) calcd for C46H32N4O $[\mathrm{M}+\mathrm{H}]^{+} 900.36969$, found 900.36915 .

Section 3:

Figure S_{1} (a) TGA and DSC (inset) curves, and (b) CV curves of the 67dTPA-FQ, and 267tTPA-FQ.

Section 4: ${ }^{1} \mathbf{H}$ NMR spectra

wxy-1
single_pulse
8.2

Figure $\mathrm{S}_{2}{ }^{1} \mathrm{H}$ NMR spectrum of 1a

Figure $\mathrm{S}_{3}{ }^{1} \mathrm{H}$ NMR spectrum of 67dTPA-FQ

Figure $\mathrm{S}_{4}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}$
wxy-0426
single_pulse

1011

,

Figure $\mathrm{S}_{5}{ }^{1} \mathrm{H}$ NMR spectrum of 267 tTPA -FQ

Figure S_{6} HRMS spectrum of 67dTPA-FQ

Figure S_{7} HRMS spectrum of 267tTPA-FQ

REFERENCE

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V.Bakken, C. Adamo, J. Jaram illo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010.
[2] Liu, W.; Wang, F.; Dai, D.; Li, L.; Dolg, M. The Beijing Four-Component Density Functional Program Package (BDF) And Its Application to EuO, EuS, YbO and YbS. Theor. Chem. Acc. 1997, 96, 75-83.
[3] Liu, W.; Hong, G.; Li, L. The Beijing Density Functional (BDF) Program Package: Methodologies and Applications, J. Theor. Comput. Chem. 2003, 2, 257-272.
[4] Hirao, K.; Ishikawa, Y. Recent Advances in Computational Chemistry, World Scientific, Singapore, 2004, 5, p257.
[5] Li, Z.; Xiao, Y.; Liu, W. On the Spin Separation of Algebraic Two-Component Relativistic Hamiltonians. J. Chem. Phys. 2012, 137, 154114.

