Electronic supplementary information (ESI[†])

Ultra-sensitive photoluminescence modification of Eu³⁺ ion based on light tuning surface potential of Bi₃O₄Cl layered semiconductor and application for facile UV light detector

Rui Hu, Yongjin Li*, Zhaoyi Yin, Tianhui Wang, Jianbei Qiu*, Zhengwen Yang, and Zhiguo Song*

School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China

*Corresponding Author: E-mail: liyongjin@kust.edu.cn (Y. Li). qiu@kust.edu.cn (J. Qiu). songzg@kust.edu.cn (Z. Song).

	Bi ₃ O ₄ Cl	Bi ₃ O ₄ Cl:5%Eu ³⁺
space group	$I1_2/a^1(15)$	$I_{1_2/a^1}(15)$
<i>a</i> (Å)	5.695	5.683
<i>b</i> (Å)	5.648	5.636
<i>c</i> (Å)	18.573	18.541
β (deg)	91.52	91.35
Z	4	4
$V(Å^3)$	597.20	593.75

Table S1. Rietveld Refinement and Lattice Parameters of Bi₃O₄Cl and Bi₃O₄Cl:5%Eu³⁺

According to the Rietveld refined results, the as-prepared Bi₃O₄Cl:Eu³⁺ phosphor is assigned to the monoclinic system and belongs to the $I1_2/a^1(15)$ space group. The lattice parameters are confirmed as a = 5.683 Å, b = 5.636 Å, c = 18.541 Å, β = 91.52°, Z = 4, and V = 593.75 Å³.^{1,2} Compared with the standard cell parameters and cell volume that derive from PDF#86-2221, all values of Bi₃O₄Cl:Eu³⁺ sample show a significant shrinkage, proving the vast substitution of Eu³⁺ ions (1.066 Å, CN = 8) for the bigger Bi³⁺ sites (1.17 Å, CN = 8).

Fig. S1. Plots of $(\alpha hv)^{1/2}$ vs. the photon energy (hv) for the as-synthesized undoped Bi₃O₄Cl sample (a) and the Bi₃O₄Cl:4%Eu³⁺ sample (b).

As showed in **Fig. S1a-b**, the absorption edge of Eu^{3+} doped Bi_3O_4Cl sample slightly redshifts compared with that of undoped one (for simplifying, just represented the representative curves of sample with 0 and 4 mol% Eu^{3+}). It indicates that Eu^{3+} ion dopant forming impurity energy levels decreases the forbidden gap of Bi_3O_4Cl , and the calculation of energy band structure is being done by our group.²

Fig. S2. (a)-(b) Excitation spectra of Bi₃O₄Cl: xEu^{3+} (x = 1, 2, 3, 4, and 5 mol%) micorcrystals recorded at $\lambda_{Em} = 613$ nm and 704 nm; (c)-(d) Emission spectra of the same samples upon 320 nm and 465 nm excitation. The insets are the enlarged excitation spectra in ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ and ${}^{7}F_{0} \rightarrow {}^{5}D_{1}$ transition region, and other excitation bands followed the similar tendency but without presentation for simplifying.

Fig. S2 presents the excitation spectra (a-b) and emission spectra (c-d) of prepared Eu^{3+} doped Bi_3O_4Cl samples with different concentration of Eu^{3+} ions. It shows that whether under absorption-edge (394 and 465 nm) or intraband (526 nm) excitation, the concentration dependence of the emission intensity of Eu^{3+} ion are totally same, except that under deep-UV excitation (320 nm) (Figure S3c-d). This indicates that the photoexcited electrons from broadband excitation may be excited via intermediate electron-hole pair states of semiconductor.

As for the decay times of Eu³⁺-related emission for Bi₃O₄Cl:4%Eu³⁺ sample, all decay profiles keep following the single exponential decay equation: $I = A \exp(-t/\tau)$,^{3,4} where parameters *A*, *I*, and *t* are represent the constant, luminescent intensity, and the decay time, respectively. Therefore, under 465 nm excitation, the lifetimes of sample were calculated to 1.00 ms ($\lambda_{Em} = 613$ nm), 0.92 ms ($\lambda_{Em} = 620$ nm), 0.91 ms ($\lambda_{Em} = 698$ nm), and 0.99 ms ($\lambda_{Em} = 704$ nm), respectively. Meanwhile, under 320 nm irradiation, the obtained results are 1.24 ms ($\lambda_{Em} = 613$ nm), 1.17 ms ($\lambda_{Em} = 620$ nm), 1.15 ms ($\lambda_{Em} = 698$ nm), and 1.17 ms ($\lambda_{Em} = 704$ nm), respectively.

Reference

- [1] R. D. Shannon, Acta Crystallographica. 1976, A32, 751.
- [2] X. P. Lin, T. Huang, F. Q. Huang, W. D. Wang, J. L. Shi, J. Phys. Chem. B 2006, 110, 24629.
- [3] P. Du, J. S. Yu, Chem. Eng. J. 2017, 327, 109.
- [4] J. Zhou, Z. G. Xia, J. Mater. Chem. C 2014, 2, 6978.