Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

A Multicolor-Switchable Fluorescent Lanthanide MOFs Triggered by Anti-cancer

Drugs: Multifunctional Platform for Anti-cancer Drug Sensing and Information

Anticounterfeiting

Yu Zhang^a, Xin Xu^a and Bing Yan^{*a,b}

^aShanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji

^bUniversity, Siping Road 1239, Shanghai 200092, China

School of Material Science and Engineering, Liaocheng University, Liaocheng, 252059, China

Corresponding author: Prof. Dr. Bing Yan, Email: byan@tongji.edu.cn

Figure S1 The detail structure of the (a) Eu-MOFs; (b) Tb-MOFs.

Figure S2 The SEM image and element mappings of (a) (b) Eu-MOFs; (c) (d) Tb-MOFs.

Figure S3 Energy dispersive X-ray analysis (EDX) spectroscopy of (a) Tb-MOFs and (b) Eu-MOFs.

Figure S4 The PXRD patterns of Eu-MOFs, Tb-MOFs and simulated one.

Figure S5 FT-IR spectrum of the H₂atpt, 1,10-phen, Eu-MOFs and Tb-MOFs.

Figure S6 Thermal gravimetric analysis curves for Eu-MOFs.

Figure S7 Excitation (black line) and emission (red line) spectra of (a) 1,10-phen and (b) H₂atpt.

Figure S8 (a) Excitation (black line) and emission (red line) spectra of Eu-MOFs in solid state (The inset is corresponding photograph under UV light); (b) The corresponding CIE chromaticity diagram of Eu-MOFs.

Figure S9 (a) Excitation (black line) and emission (red line) spectra of Tb-MOFs in solid state (The inset is corresponding photograph under UV light); (b) The corresponding CIE chromaticity diagram of Tb-MOFs.

Figure S10Energy transfer diagram for ligand and Eu^{3+}/Tb^{3+} , $S_0 =$ groundstates, S_1 and S_2 =excited singlet states, T_1 and T_2 = excited triplet states, IC=internal conversion,ISC=intersystem crossing (non-radiative processes), ET =energy transfer.

Figure S11 (a) Excitation (black line) and emission (red line) spectra of Eu-MOFs in aqueous solution (The inset is corresponding photograph under UV light); (a) Excitation (black line) and emission (red line) spectra of Tb-MOFs in H₂O (The inset is corresponding photograph under UV light)

Figure S12 (a) PXRD of Eu-MOFs after being immersed into aqueous solution for 96 h; (b) PXRD of Eu-MOFs after being immersed into solutions of pH = 4-9.

Figure S13 Emission spectra of Eu-MOFs after being immersed into aqueous solution for 0-48 h.

Figure S14 The corresponding histogram (I_{470nm}/I_{613nm}) of the original Cu-Eu-MOFs and Cu-Eu-MOFs after the addition of 6-MP and 6-TG.

Figure S15 Luminescence responses of I_{470nm}/I_{613nm} toward other urine components with and without (a) 6-TG; (b) 6-MP.

Figure S16 Luminescence spectra of Cu-Eu-MOFs towards frequently used antibiotics or anti-cancer drugs.

Figure S17 Variation of luminescent intensity of Eu-MOFs with different immersion time in (a) 6-MP; (b) 6-TG.

Figure S18 The column diagram of the fluorescence intensity of Eu-MOFs (I_{470nm}/I_{613nm}) after immersing into different concentrations of (a) 6-MP; (b) 6-TG in urine sample.

Figure S19 PXRD patterns of Eu-MOFs after being immersed into H_2O , Cu^{2+} , $Cu^{2+}+6$ -MP and $Cu^{2+}+6$ -TG.

Figure S20 UV-vis spectra of H₂atpt, 1,10-phen, Eu-MOFs, 6-TG and 6-MP.

Figure S21 Excitation spectra of Eu-MOFs in aqueous solution, Cu²⁺+6-MP and Cu²⁺+6-TG.

Figure S22 Emission spectrum Gauss fitting curve of Eu-MOFs in (a) H_2O ; (b) $Cu^{2+}+6-MP$ and (c) $Cu^{2+}+6-TG$.

Figure S23 Luminescence decay curves of Eu-MOFs after being immersed into H_2O , Cu^{2+} , $Cu^{2+}+6$ -MP and $Cu^{2+}+6$ -TG.

Figure S24 (a) Photograph of Tb-MOFs inks under daily light (left) and UV light (right); (b) Photograph of Eu-MOFs inks under daily light (left) and UV light (right).

Table S1 The weight percentage of elements in Eu-MOFs and Tb-MOFs determined by energydispersive X-ray spectroscopy (EDX).

(а)
`		/

Material	Element	Weight%
Eu-MOFs	С	54.07
	Ν	9.92
	0	19.81
	Eu	16.20

(b)			
	Material	Element	Weight%
		С	53.29
	Tb-MOFs	Ν	12.48
		0	24.09
		Tb	10.14

Table S2 The luminescence decay times of Eu-MOFs after being immersed into H_2O , Cu^{2+} , Cu^{2+} +6-MP and Cu^{2+} +6-TG.

Substance	Lifetimes	
H ₂ O	609.11µs	
Cu ²⁺	613.28µs	
Cu ²⁺ -6-MP	541.66µs	
Cu ²⁺ -6-TG	527.06µs	