Microstructure driven magnetic composite for excellent microwave

absorption in extended Ku-band

Anurima De, Bhanu Bhusan Khatua*

Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

*Corresponding Author

Prof. Bhanu Bhusan Khatua (Email: khatuabb@matsc.iitkgp.ernet.in).

Materials Science Centre, Indian Institute of Technology, Kharagpur -721302, India.

Tel.:+91-3222-283982

Fig. S1 (a) FESEM image of particle size distribution of SPB nanoparticles, (b) Diameter distribution of SPB nanoparticles.

Fig. S2 EDAX mapping of the elements in synthesized PHPBR1-1 polymer nanocomposite (a) selected area, (b) C, (c) N, (d) O, (e) Fe, and (f) Si.

Fig. S3 Field dependence magnetization expansion within +/- 80Oe of SPB and HPB nanoparticles.

Fig. S4 DC conductivity of (a) HPBR2-1, HPBR1-1, HPBR1-2 nanocomposites.

Fig. S5 Frequency-dependent EMI SE_T of pure PDMS polymer and 15 wt% rGO loaded PDMS based composite.

Fig. S6 Frequency-dependent (a) EMI SE_T, (b) EMI SE_A, (c) EMI SE_R of PHPBR1-1 polymer nanocomposite with different wt. % of filler (HPBR1-1) loading.

Fig. S7 (a) Cole–Cole semicircles (ε ' versus ε '') of the prepared polymer nanocomposite (b) $\mu''(\mu')^{-2} f^{-1}$ (representing eddy current loss) versus frequency of various prepared polymer nanocomposite with respect to frequency in the extended Ku-band region.