Electronic Supporting Information

A method for identifying the cause of inefficient salt-doping in organic semiconductors

A. Rahimi Chatri,^{*a*} J. Liu,^{*a*} F. Jahani,^{*a,b*} L. Qiu,^{*a,b,c*} R. C. Chiechi,^{*a,b*} J. C. Hummelen^{*a,b*} and L. J. A. Koster^{**a*}

^a Zernike institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

^b Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

^c Present address: Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.

*Email: l.j.a.koster@rug.nl

List of Figures

S1	Voltage sweep used in the simulations.	4
S2	Current- voltage characteristic of PTEG-1, n-doped with TBAF and TMAF, before (solid	
	lines) and after (dotted lines) application of long duration bias stress. The voltage	
	sweep rate is 4 Vs^{-1} .	4
S3	Current-voltage characteristic of PTEG-1, n-doped with TBAI and TBABF $_4$, a) before,	
	and b) after the application of a long duration bias voltage. The voltage sweep rate is	
	4 Vs^{-1}	5
S4	Current-voltage characteristics of the n-doped devices, 44 days after application of	
	long duration bias voltage, in logarithmic and linear scale.	6

1 Numerical procedures

We use a transient drift-diffusion program to simulate the time-voltage-current characteristics of a doped layer. The simulation code is open-source⁽¹⁾ and is available on GitHub.⁽²⁾ The main simulation parameters are listed in Table S1. Figure S1 shows how the voltage is varied over time. The voltage is ramped up from 0 V to 6 V in 1 ms and held there for 100 s followed by a decrease back to 0 V in 1ms.

The simulation solves the transient development of the potential V(x), electron density n(x), and the ionic densities $n_{ion}(x)$ and $p_{ion}(x)$. The Poisson equation relates the potential V(x) to the charge density

$$\frac{\partial}{\partial x} \left(\varepsilon \frac{\partial V(x)}{\partial x} \right) = q(n(x) + n_{\rm ion}(x) - p_{\rm ion}(x)). \tag{1}$$

where ε is the dielectric constant.

The ionic and electron current densities are solved from the drift-diffusion equations, then one has for electrons

$$J_n(x) = -qn(x)\mu_n(x)\frac{\partial V(x)}{\partial x} + kT\mu_n(x)\frac{\partial n(x)}{\partial x},$$
(2)

and for positive ions, one has

$$J_{pion}(x) = -qp_{ion}(x)\mu_{pion}(x)\frac{\partial V(x)}{\partial x} - kT\mu_{pion}(x)\frac{\partial p_{ion}(x)}{\partial x},$$
(3)

where μ_{pion} is the ion mobility. For negative ions, we have

$$J_{\rm nion}(x) = -qn_{\rm ion}(x)\mu_{\rm nion}(x)\frac{\partial V(x)}{\partial x} + kT\mu_{\rm nion}(x)\frac{\partial n_{\rm ion}(x)}{\partial x}.$$
(4)

The total current density is then given by

$$J(x) = J_n(x) + J_D(x) + J_{nion}(x) + J_{pion}(x),$$
(5)

where $J_D(x)$ is the displacement current.

The boundary condition on the potential V is given by

$$V(L) - V(0) = V_a,$$
(6)

where L is the thickness of the layer and V_a is the applied voltage. For the electron densities, we have the requirement that

$$n(0) = n(L) = N_c \exp(-\phi/kT),$$
 (7)

where N_c is the effective density of states and ϕ is the injection barrier. The boundary condition on the ionic densities is set by requiring that no ions can enter or leave the layer through the electrodes.

parameter	value
device thickness	3000 nm
relative dielectric constant	4
effective density-of-states	$2.5 \times 10^{25} \text{ m}^{-3}$
electron mobility	$10^{-7} { m m}^2/{ m Vs}$
injection barrier	0.2 eV
ion concentration	10^{22} m^{-3}
ion mobility (high)	$10^{-13} \text{ m}^2/\text{Vs}$
ion mobility (low)	$10^{-18} \text{ m}^2/\text{Vs}$

Table S1: Parameters used in the transient drift-diffusion simulations.

Figure S1: Voltage sweep used in the simulations.

Figure S2: Current- voltage characteristic of PTEG-1, n-doped with TBAF and TMAF, before (solid lines) and after (dotted lines) application of long duration bias stress. The voltage sweep rate is 4 Vs^{-1} .

Figure S3: Current-voltage characteristic of PTEG-1, n-doped with TBAI and TBABF₄, a) before, and b) after the application of a long duration bias voltage. The voltage sweep rate is 4 Vs^{-1} .

Figure S4: Current-voltage characteristics of the n-doped devices, 44 days after application of long duration bias voltage, in logarithmic and linear scale.

2 Experimental results

References

- [1] M. Koopmans, V. M. Le Corre and L. J. A. Koster, J. Open Source Softw., 2022, 7, 3727.
- [2] *SIMsalabim*, 2021, https://github.com/kostergroup/SIMsalabim.