Supporting Information

Effect of the nanoparticles size on thermometric properties of Single-Band Ratiometric Luminescent Thermometer in NaYF4:Nd³⁺

K. Trejgis^{1*}, K. Ledwa¹, Leipeng Li², L. Marciniak^{1*}

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland

² Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China

* corresponding author: <u>k.trejgis@intibs.pl</u>, <u>l.marciniak@intibs.pl</u>

KEYWORDS: SBR approach, luminescence thermometry, NaYF₄, neodymium, size effect

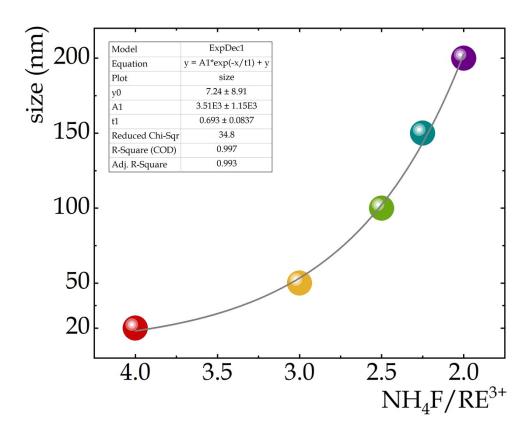


Figure S1. The influence of variations in NH_4F to RE^{3+} concentration on nanocrystal size. The gray line indicates the fit of the change trend with an exponential function.

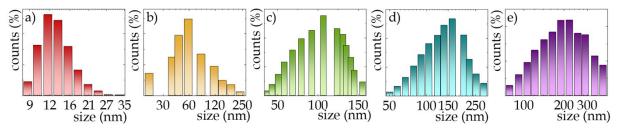


Figure S2 Impact of changing the NH₄F to RE³⁺ ratio on hydrodynamic size distribution of NaYF₄:2%Nd³⁺ nanocrystals. Nanocrystals synthesized with NH₄F/RE³⁺ ratios of 4, 3, 2.5, 2.25, 2 are seen in a), b), c), d) and e), respectively.

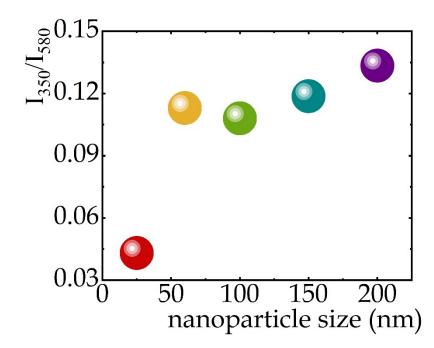


Figure S3. Effect of size on the intensity ratio of the 350 nm excitation band relative to the 580 nm excitation band.

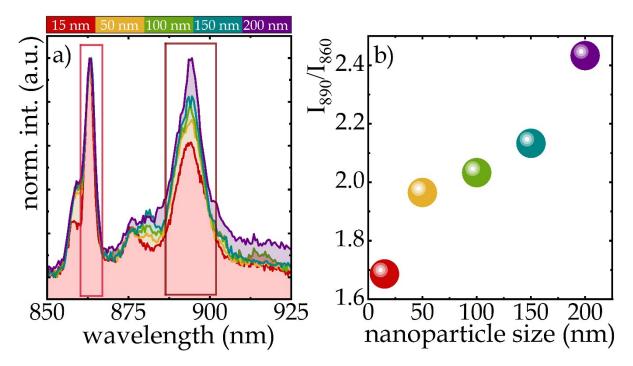


Figure S4. Changes in the intensity of the particular components of the emission band at 880 nm associated with electronic transition from R_1 and R_2 Stark sublevels of ${}^4F_{3/2}$ state to the Z_1 Stark sublevel of the ${}^4I_{9/2}$ state due to size changes (a); variation of the intensity ratio of the components at 863 nm versus 890 nm for increasing sizes of NaYF₄:2%Nd³⁺ nanocrystals.



Figure S5. Impact of nanocrystal size on decay curves.

Average luminescence lifetimes presented in inset of Fig. 3d were calculated using the following equation:

$$\tau_{avr} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$
(eq.S1)

Where all the parameters are obtained from the fitting of the experimental decay profile with double exponential function:

$$y = A_1 \cdot e^{-x/t_1} + A_2 \cdot e^{-x/t_2} + y_0$$
 (eq.S2)

 A_i (i=1,2) are the amplitudes of the respective components, τ_i are the individual lifetime determined as $\tau_i=t_i*ln(2)$, when t_i means time constant (see Fig. S2).

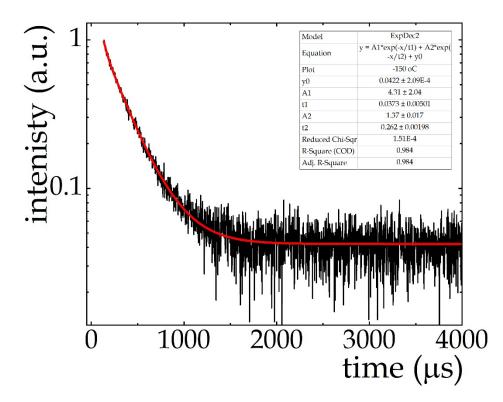


Figure S6. Decay curve and fit curve of the ExpDec2 function of an example 100 nm $NaYF_4:2\%Nd^{3+}$ sample. The table shows the parameter values used to calculate the average time with the double-exponential function according to Equation S1.

NP size	$ au_{\mathrm{avr}}$
15	0.009
50	0.020
100	0.051
150	0.104
200	0.115

Table S1. The average decay times of analyzed particles.

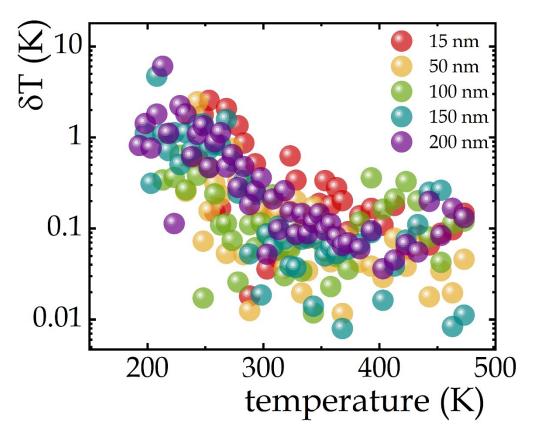


Figure S7. The temperature resolutions of Nd³⁺-doped NaYF₄ based SBR LTs.