Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Controlling Screw Dislocation Evolutions towards High Homogeneous Quasi-

Two-Dimensional (BA)₂(MA)_{n-1}Pb_nI_{3n+1} Single Crystals for High Response Photo-

detectors

Qing Yao¹, Jie Zhang¹, Kaiyu Wang¹, Changqian Li¹, Chenyu Shang¹, Haiqing Sun¹,

Weiwei Zhang¹, Tianliang Zhou^{2, *}, Huiling Zhu^{1, *}, Jianxu Ding^{1, *}

- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
- 2. College of Materials, Xiamen University, Xiamen 361005, China;

Corresponding authors:

Tianliang Zhou- College of Materials, Xiamen University, Xiamen 361005, China; orcid.org/ 0000-0002-0086-084X; Email: bible2@163.com

Huiling Zhu- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; orcid.org/0000-0002-5698-1026; Email: skdzhl@sdust.edu.cn

Jianxu Ding- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; orcid.org/0000-0001-5662-2683; Email: <u>dingjianxu@sdust.edu.cn</u>

1. Descriptions of the raw materials purity

Figure S1 (a-b) Photograph and XRD pattern of MAI powders.

The synthesis process of MAI powders: Methylamine CH₃NH₂ solution and hydroiodic acid HI are reacted in an ice-water bath at a volume ratio of 6:5. After reacting for 4 hours, the mixed solution was sealed at 60°C for 24 hours. The crystallization of MAI is achieved by evaporating water at 60°C to obtain white MAI powder (Figure S1a). Figure S1b shows the XRD pattern of MAI powder.

2. Photographs of BMPI solution preparation

Figure S2 (a-b) Photographs of I solution; (c-d) Photographs of II solution; (e-f) Photographs of crystal growth solution.

3. Photographs of BMPI perovskite SCs growth

Figure S3 Photographs of BMPI (n=1-4 and ∞) SCs growth.

4. Crystal data for BMPI (n=1-4 and ∞) SCs at 293K

n values	<i>n</i> =1	<i>n</i> =2	n=3	<i>n</i> =4	n=∞
Crystal	orthorhombic	orthorhombic	orthorhombic	orthorhombic	tetragonal
system					
Space group	Pbca	Cc2m	C2cb	Cc2m	I4/mcm
Color	orange	red	dark red	black	black
a(Å)	8.8555(8)	8.9470(4)	8.9275(6)	8.9274(4)	8.8392(3)
b(Å)	8.6810(8)	39.347(2)	51.959(4)	64.383(3)	8.8392(3)
c(Å)	27.602(3)	8.8589(6)	8.8777(6)	8.8816(4)	12.6948(5
)
$\alpha = \beta = \gamma(\text{deg})$	90	90	90	90	90
Volume(Å ³)	2121.89(4)	3118.67(3)	4118.04(5)	5104.9(4)	991.86(6)
Z	8	4	4	4	4
References	[1]	[2]	[2]	[2]	[3]

Table S1. Crystal data for BMPI (*n*=1−4 and ∞) SCs at 293K

5. 2D AFM image of heterojunction structures on the (020) surface of BA₂MA₃Pb₄I₁₃ SCs

Figure S4. (a) 2D AFM images of heterojunction structures of $BA_2MA_3Pb_4I_{13}$ SCs;

(b-d) step heights.

6. 2D AFM image of BA₂PbI₄ SCs

Figure S5. (a-b) 2D AFM image of growth steps and holes on (002) surface of BA_2PbI_4 (BA=20%) SCs; (c-h) step heights and hole depth files of the measured steps and holes.

7. Spiral dislocation diagram of BMPI (*n*=2-3) SCs

Figure S6. (a-d) Spiral dislocation diagram of BMPI (n=2-3) SCs (magnification: 50).

8. 2D AFM layered structure

Figure S7. (a-c) 2D AFM layered structure on BMPI (n=2-4) SCs (020) surface; (d-i)

The heights between layers of the layered structure on the (020) surface.

9. Length and width of screw dislocation steps

number	Width (µm)	Length (µm)	
1	2.05	2.25	
2	2.16	1.72	
3	2.37	1.79	
4	2.05	2.25	
5	1.73	1.72	
6	1.51	1.62	
7	1.51	1.40	
8	1.83	1.62	
9	1.62	1.96	
10	1.51	1.62	
11	1.51	1.29	
12	1.62	1.83	
13	1.62	1.72	
14	1.62	1.79	
Average	1.765	1.797	

Table S2. Length and width of screw dislocation steps

References

- A. M. Sanni, S. Lavan, A. Avramenko, F. A. Rabuffetti, L. Suescun, A. Rury, Room-Temperature Broadband Light Emission from Hybrid Lead Iodide Perovskite-Like Quantum Wells: Terahertz Spectroscopic Investigation of Metastable Defects, *J. Phys. Chem. Lett.*, 2019, 10, 1653-1662.
- (2) C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, M. G. Kanatzidis, Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors, *Chem. Mater.*, 2016, 28, 2852-2867.
- (3) P. S. Whitfield, N. Herron, W. E. Guise, K. Page, Y. Q. Cheng, I. Milas, M. K. Crawford, Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide, *Sci. Rep.*, 2016, 6, 35685.