Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

β -Ga₂O₃ heterojunction field-effect transistors prepared *via* UV laser-assisted

p-doping of two-dimensional WSe₂

Sanghyun Moon^{1,‡}, Jinho Bae^{2,‡}, and Jihyun Kim^{1,*}

¹ School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea

² Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea

[‡] These authors contributed equally to this work.

*Corresponding author: Jihyun Kim (jihyunkim@snu.ac.kr)

Figure S1. Raman spectra of WSe₂ before (black) and after (orange) UV laser treatment. The peak at ~520 cm⁻¹ originates from the Si substrate.

Figure S2. $I_{DS} vs V_G$ and $I_G vs V_G$ characteristics of the β -Ga₂O₃ HJFET with WSe₂ top-gate (a) before and (b) after UV laser treatment.

Figure S3. Comparison of the output characteristics ($V_G = +1 V to -14 V, -1 V step$) of the β -Ga₂O₃ HJFET after the storage in an air ambience for 6 months.

thickness	β-Ga ₂ O ₃	WSe ₂
h (nm)	393.3	20.5
contact resistance	β-Ga₂O₃ to Ti/Au	WSe₂to Pt/Au
$D_{\rm c}$ (hO mas)		

Table S1. The

 $\mbox{Ga}_2\mbox{O}_3$ and $\mbox{WSe}_2,$ and the corresponding contact resistances

thickness of β -