Supplementary material

Carbon Dots-Decorated Hydroxyapatite Nanowires-Lanthanide Metal-Organic Framework Composites as Fluorescent Sensors for Detection of Dopamine

Mengyao Sun, [†] Lei Zhang, ^{*,†} Sen Xu, [†] Bohao Yu, [†]Yajie Wang, [‡] Lingyi Zhang [†] and Weibing Zhang ^{*,†}

[†] Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

[‡] Department of Pharmacy, Anhui Medical College, Hefei, 230601, China

Corresponding authors: Lei Zhang, Weibing Zhang *E-mail: leizhang595@ecust.edu.cn. Tel: +86-21-64252942. Fax: +86-21-64252947.

*E-mail:weibingzhang@ecust.edu.cn.Tel:+86-21-64252145. Fax: +86-021-64233161.

Material characterization

Table S1. The comparison of different detection method for DA detection.

Figure S1. TEM of HAPNWs (a) and zoom of TEM of HAPNWs-CDs-Tb/MOF (b).

Figure S2. Energy Dispersive Spectrometer (EDS) spectrum of the HAPNWs (a) and HAPNWs-CDs-Tb/MOF (b).

Figure S3. The emission spectra of CDs (a), Tb-MOF (b) and HAPNWs-CDs-Tb/MOF (c).

Figure S4. Stern-Volmer plot for CDs quenching on the probe by DA.

Figure S5. Emission spectra of CDs (a), Tb-MOF (b) and HAPNWs-CDs-Tb/MOF (c) solution with different excitation wavelengths.

Figure S6. Emission spectra of HAPNWs-CDs-Tb/MOF solution with (red, right) and without (black, left) DA. (Inset: The diagram of fluorescence color change).

Figure S7. Effects of pH values on fluorescence intensity of HAPNWs-CDs-Tb/MOF with (red) and without (black) DA (a), effects of interaction time on fluorescence intensity of HAPNWs-CDs-Tb/MOF with DA (b).

Figure S8. The short-term stability of HAPNWs-CDs-Tb/MOF suspension solution with (red) and without (black) DA (a), the long-term stability of HAPNWs-CDs-Tb/MOF suspension solution (b).

Figure S9. The emission spectra of Tb^{3+} , Tb^{3+} with BTC, Tb^{3+} with DA and Tb^{3+} with BTC and DA.

Detection Method	Linear Range	Detection	R ²	Refs.
	(µM)	Limit (µM)		
Electrochemical	100-1000	0.24	0.9842	[1]
method				
Electrochemical	2-800	0.67		[2]
method				
Colorimetric method	0.01-3.6	0.255	0.9998	[3]
Electrochemical	5-50	1.32	0.996	[4]
method				
Colorimetric method	1-100	0.66	0.991	[5]
Fluorescence method	0.1-200	0.01664	0.99	[6]
Fluorescence method	10-80	0.12	0.93575	[7]
Fluorescence method	0.1-100	0.032	0.999	[8]
This work	0.04-20	0.01226	0.9979	This work

Table S1 The comparison of different detection method for DA detection

Figure S1. TEM of HAPNWs (a) and zoom of TEM of HAPNWs-CDs-Tb/MOF (b).

Figure S2. Energy Dispersive Spectrometer (EDS) spectrum of the HAPNWs (a) and HAPNWs-CDs-Tb/MOF (b).

Figure S3. The emission spectra of CDs (a), Tb-MOF (b) and HAPNWs-CDs-Tb/MOF (c).

Figure S4. Stern-Volmer plot for CDs quenching on the probe by DA.

Figure S5. Emission spectra of CDs (a), Tb-MOF (b) and HAPNWs-CDs-Tb/MOF (c) solution with different excitation wavelengths.

Figure S6. Emission spectra of HAPNWs-CDs-Tb/MOF solution with (red, right) and without (black, left) DA. (Inset: The diagram of fluorescence color change).

Figure S7. Effects of pH values on fluorescence intensity of HAPNWs-CDs-Tb/MOF with (red) and without (black) DA (a), effects of interaction time on fluorescence intensity of HAPNWs-CDs-Tb/MOF with DA (b).

Figure S8. The short-term stability of HAPNWs-CDs-Tb/MOF suspension solution with (red) and without (black) DA (a), the long-term stability of HAPNWs-CDs-Tb/MOF suspension solution (b).

Figure S9. The emission spectra of Tb^{3+} , Tb^{3+} with BTC, Tb^{3+} with DA and Tb^{3+} with BTC and DA.

References

[1] U. Amara, M. T. Mehran, B. Sarfaraz, K. Mahmood, A. Hayat, M. Nasir, S. Riaz and M. H. Nawaz, *Microchim Acta*, 2021, **188**, 230.

[2] X. Zhang, D. Q. Li, Y. G. Sun, C. Y. Dong, H. J. Zhu, X. Li, Q. M. Cao, J. W. Shen,
F. L. Yan, Y. J. Wei, Y. J. Lu, J. Yu, J. W. Zhu, Z. Wan and Y. D. Xu, *Mater Lett*, 2021, 293, 129739.

[3] U. Nishan, U. Sabba, A. Rahim, M. Asad, M. Shah, A. Iqbal, J. Iqbal and N. Muhammad, *Mater Chem Phys*, 2021, **262**, 124289.

[4] R. R. Mathiarasu, A. Manikandan, J. N. Baby, K. Panneerselvam, R. Subashchandrabose, M. George, Y. Slimani, M. A. Almessiere and A. Baykal, *Physica B*, 2021, **615**, 413068.

[5] X. Lai, Y. Han, J. Zhang, J. Y. Zhang, W. F. Lin, Z. W. Liu and L. G. Wang, *Molecules*, 2021, **26**, 2738.

[6] S. Q. Xie, X. J. Li, L. M. Wang, F. W. Zhu, X. Y. Zhao, T. Q. Yuan, Q. Liu and X. Q. Chen, *Microchem J*, 2021, 160, 105718.

[7] M. A. Yu, Y. Lu and Z. J. Tan, *Talanta*, 2017, 168, 16-22.

[8] W. J. He, R. J. Gui, H. Jin, B. Q. Wang, X. N. Bu and Y. X. Fu, *Talanta*, 2018, **178**, 109-115.