Quinine as Highly Responsive Chiral Sensor for the ¹H and ¹⁹F NMR Enantiodiscrimination of *N*-Trifluoroacetyl Amino Acids with Free Carboxyl Functions

Alessandra Recchimurzo, Fabio Maccabruni, Gloria Uccello Barretta,* Federica Balzano Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy.

*gloria.uccello.barretta@unipi.it

Supplementary Information

Table S1. Nonequivalences of 1-10 at 60 mM and 5 mM in the presence of Qui in $CDCl_3$ or C_6D_6

Table S2. Comparison of ee (%) of (*R*)-**3** determined by gravimetric data and by NMR integration in equimolar mixtures **3/Qui** (60 mM) in C_6D_6

Figure S1. Comparison of ¹H NMR (600 MHz, 25 °C, C_6D_6) spectral regions corresponding to *NH* proton of racemic **3** in equimolar **3/Qui** mixture at variable concentrations

Figure S2. Comparison of ¹⁹F NMR (564 MHz, 25 °C, C_6D_6) spectra of racemic **3** in equimolar **3/Qui** mixture at variable concentrations

Table S3. ¹H NMR chemical shifts of H1 and H2 protons of **Qui** at variable concentration in the presence of **3** (15 mM) in C_6D_6

Figure S3. Schematic representation of Qui in the open-like conformation

Table S4. Comparison of ee (%) determined by gravimetric data and by integration of ¹⁹F NMR signals of the two amino acids mixtures analysed in C_6D_6 and $CDCl_3$

Figure S4. Absolute errors of ee in the determination of ee by NMR integration of *N*-TFA-amino acid derivatives in mixtures

Figure S5. Stoichiometry determination

Figure S6. Association constants determination

Figure S7. 1D ROESY spectra

Figure S8. N-TFA-amino acid derivatives 1-10 with numbered protons

NMR characterization of 1-10 and Qui

		Δ	Δδ (ppm)	
substrate	NH	CHα	CH ₃	CF ₃
1*	0.038 (0.013)	0.020 (0.011)	0.015 (0.008)	0.015 (0.006)
2*	0.020 (0.015)	0.004 (0.006)	0.010/0.022 (0.013/0.018)	0.033 (0.011)
3	0.210 (0.058)	0.007 (0.004)	0.026/0.011 (0.0027/0.020)	0.089 (0.009)
3*	0.041	0.008	0.016/0.023	0.032
4	0.183 (0.088)	0.028 (-)	0.036 (0.034)	0.082 (0.040)
4*	0.035	0.008	0.017	0.023
5	0.964 (1.230)	0.329 (0.374)		0.065 (0.103)
5*	0.533	0.267		0.057
6	0.201 (0.056)	0.084 (0.010)		0.052 (-)
6*	0.032	0.001	-	0.008
7	0.169 (0.070)	0.006 (0.005)	0.029 (0.030)	0.090 (0.025)
7*	0.034	0.011	0.004	0.032
8*	1.302 (1.090)	0.012 (0.024)		0.156 (0.114)
9		0.108/0.066 (0.037/0.038)		0.047/0.057 (0.037/0.081)
9*		0.029/0.032		0.037/0.064
10*	0.025 (0.081)	0.047 (0.004)		- (0.004)

Table S1. Nonequivalence $(\Delta\Delta\delta = |\Delta\delta_R - \Delta\delta_S|$, ppm) data of **1-10** at 60 mM and 5 mM (in parenthesis) in the presence of one equivalent (for **1-7**, **9**, **10**) or two equivalents (for **8**) of **Qui** in CDCl₃ or C₆D₆.

*NMR analysis carried out in \mbox{CDCl}_3

ee by gravimetric data (%)	ee by NIMP integration (%)	absolute error
98.94	99.26	0.32
89.86	89.3	0.56
80.30	79.64	0.66
59.86	59.5	0.36
40.42	40.72	0.30
19.94	20.16	0.22
0.38	0.92	0.54
-20.16	-19.76	0.40
-39.92	-39.54	0.38
-60.18	-60.64	0.46
-79.94	-80.44	0.50
-89.8	-90.36	0.56
-99.8	-99.24	0.56

Table S2. Comparison of ee (%) of (*R*)-**3** determined by gravimetric data and by integration of ¹H and ¹⁹F NMR signals of **3** (60 mM) in equimolar mixtures **3/Qui** in C_6D_6 . The corresponding absolute error is also reported.

8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40

Figure S1. Comparison of ¹H NMR (600 MHz, 25 °C, C₆D₆) spectral regions corresponding to *NH* proton (\mathfrak{H}) of racemic **3** in equimolar **3/Qui** mixture at: a) 0.1 mM; b) 1 mM; c) 5 mM; d) 10 mM; e) 15 mM; f) 20 mM; g) 30 mM; h) 60 mM; ***Qui** resonance.

Figure S2. Comparison of ¹⁹F NMR (564 MHz, 25 °C, C_6D_6) spectra of racemic **3** in equimolar **3/Qui** mixture at: a) 0.1 mM; b) 10 mM; c) 15 mM; d) 20 mM; e) 30 mM; f) 60 mM.

	δ (μ	opm)
Qui [mM]	H1	H2
1.5	7.54	8.74
4.5	7.51	8.73
7.5	7.53	8.76
15	7.61	8.80
30	7.47	8.71
45	7.44	8.63

Figure S3. Schematic representation of **Qui** (with numbered protons) in the open-like conformation, obtained by detection of ROE effects.

N-TFA amino acid	ee by gravimetric data (%)	ee by NMR integration (%)	absolute error
1 a	20.18	19.45	0.73
2 ^a	19.96	19.58	0.38
3 ^b	-19.92	-20.72	0.80
4 ^b	-19.70	-19.36	0.34
5 ^b	19.76	20.42	0.66
6 ^b	19.90	19.20	0.70
7 ^b	19.22	19.50	0.28
8 ª	20.12	20.68	0.56
9 ^b	-19.22	-19.42	0.20
10 ^a	20.12	19.40	0.72

Table S4. Comparison of ee (%) determined by gravimetric data and by integration of ¹⁹F NMR signals of the two amino acids mixtures analysed in C_6D_6 and $CDCl_3$ and the corresponding absolute error.

 $^{\rm a}\textsc{N-TFA}$ amino acid derivatives (total concentration 60 mM) and Qui (66 mM) mixture in CDCl_3.

 $^b\textit{N}\text{-}TFA$ amino acid derivatives (total concentration 40 mM) and Qui (20 mM) mixture in $C_6D_6.$

Figure S4. Absolute errors of ee in the determination of ee by NMR integration of *N*-TFA-amino acid derivatives in mixtures.

Figure S5. Stoichiometry determination based on CF₃ group for (*R*)-**3/Qui** (s) and (*S*)-**3/Qui** (*****) complexes.

Figure S6. Non-linear fitting of dilution data: dependence of NH proton chemical shift (δ_{obs} , Hz) of **3** on the concentration (C) in equimolar mixtures (*R*)-**3/Qui** (∞) and (*S*)-**3/Qui** (*****): δ_b and δ_f in equation are the chemical shift in the bound and in the free state, respectively.

Figure S8. N-TFA-amino acid derivatives 1-10 with numbered protons.

NMR characterization of 1-10 and Quinine

N-Trifluoroacetylalanine (1) (white crystalline solid, 0.879 g, 95%).

 δ H (600 MHz, DMSO, Me₄Si, 25 °C): 12.89 (1H, br s, COOH); 9.70 (1H, d, H2, J_{H2-H1} = 6.7 Hz); 4.29 (1H, dq, H1, J_{H1-H3} = 7.2 Hz, J_{H1-H2} = 6.7 Hz); 1.33 (3H, d, H3, J_{H3-H1} = 7.2 Hz).

δC (150 MHz, DMSO, Me₄Si, 25 °C): 172.9 (COOH); 156.6 (CONH, q, J_{C-F} = 37.2 Hz); 116.2 (CF₃, q, J_{C-F} = 282.9 Hz); 48.6 (C1); 16.7 (C3).

N-Trifluoroacetylvaline (2) (pink pearl crystalline solid, 1.04 g, 97%).

δH (600 MHz, CDCl₃, Me₄Si, 25 °C): 6.75 (1H, d, H2, J_{H2-H1} = 8.4 Hz); 4.65 (1H, dd, H1, J_{H1-H2} = 8.4 Hz, J_{H1-H3} = 4.6 Hz); 2.35 (1H, m, H-3); 1.02 (3H, d, H4, J_{H4-H3} = 6.9 Hz); 1.00 (3H, d, H4', J_{H4'-H3} = 6.9 Hz).

δC (150 MHz, CDCl₃, Me₄Si, 25 °C): 174.9 (COOH); 157.2 (CONH, q, J_{C-F} = 37.6 Hz); 115.7 (CF₃, q, J_{C-F} = 288.6 Hz); 57.1 (C1); 31.2 (C3); 18.8 (C4); 17.0 (C4').

N-Trifluoroacetylleucine (**3**) (white crystalline solid, 1.01 g, 89%).

δH (600 MHz, CDCl₃, Me₄Si, 25 °C): 6.64 (1H, d, H2, J_{H2-H1} = 8.0 Hz); 4.71 (1H, m, H1); 1.70 (2H, m, H3/H3'); 1.82 (1H, m, H4); 0.99 (6H, d, H5/H5', J_{H5/5'-H4} = 6.3 Hz).

δC (150 MHz, CDCl₃, Me₄Si, 25 °C): 174.8 (COOH); 156.9 (CONH, q, J_{C-F} = 37.5 Hz); 115.6 (CF₃, q, J_{C-F} = 288.9 Hz); 50.9 (C1); 41.1 (C3); 24.9 (C4); 22.6 (C5); 21.8 (C5').

N-Trifluoroacetylnorvaline (4) (white crystalline solid, 0.905 g, 85%).

δH (600 MHz, CDCl₃, Me₄Si, 25 °C): 6.75 (1H, d, H2, J_{H2-H1} = 7.6 Hz); 4.69 (1H, dt, H1, J_{H1-H2} = 7.6 Hz; J_{H1-H3} = J_{H1-H3'} = 5.4 Hz); 1.98 (1H, m, H3); 1.80 (1H, m, H3'); 1.41 (2H, m, H4); 0.97 (3H, t, H5, J_{H5-H4} = 7.4 Hz).

δC (150 MHz, CDCl₃, Me₄Si, 25 °C): 175.4 (COOH); 156.9 (CONH, q, J_{C-F} = 38.0 Hz); 115.6 (CF₃, q, J_{C-F} = 286.7 Hz); 52.7 (C1); 33.8 (C3); 18.1 (C4); 13.5 (C5).

N-Trifluoroacetylphenylalanine (5) (white crystalline solid, 0.992 g, 76%).

 δ H (600 MHz, CDCl₃, Me₄Si, 25 °C): 7.33 (2H, t, H5, J_{H5-H6} = J_{H5-H4} = 7.0 Hz); 7.30 (1H, t, H6, J_{H6-H5} = 7.0 Hz); 7.14 (2H, d, H4, J_{H4-H5} = 7.0 Hz); 6.71 (1H, d, H2, J_{H2-H1} = 6.9 Hz); 4.94 (1H, dt, H1, J_{H1-H2} = 6.9 Hz, J_{H1-H3} = J_{H1-H3'} = 5.6 Hz); 3.30 (1H, dd, H3, J_{H3-H3'} = 14.2 Hz, J_{H3-H1} = 5.6 Hz); 3.21 (1H, dd, H3', J_{H3'-H3} = 14.2 Hz, J_{H3'-H1} = 5.6 Hz). δ C (150 MHz, CDCl₃, Me₄Si, 25 °C): 174.1 (COOH); 156.7 (CONH, q, J_{C-F} = 38.2 Hz); 134.2 (<u>C</u>-C4); 129.2 (C4); 129.0 (C5); 127.8 (C6); 115.5 (CF₃, q, J_{C-F} = 287.6 Hz); 53.2 (C1); 36.9 (C3).

N-Trifluoroacetylphenylglycine (6) (white crystalline solid, 1.20 g, 97%).

δH (600 MHz, CDCl₃, Me₄Si, 25 °C): 7.33 (5H, m, H3, H4, H5); 7.23 (1H, d, H2, J_{H2-H1} = 7.0 Hz); 5.59 (1H, d, H1, J_{H1-H2} = 7.0 Hz).

δC (150 MHz, CDCl₃, Me₄Si, 25 °C): 173.1 (COOH); 156.4 (CONH, q, J_{C-F} = 38.1 Hz); 133.8 (<u>C</u>-C3); 129.6/129.3/127.2 (C3, C4, C5); 115. 5 (CF₃, q, J_{C-F} = 279.5 Hz); 56.4 (C1).

N-Trifluoroacetylmethionine (7) (white crystalline solid, 0.981 g, 80 %).

δH (600 MHz, CDCl₃, Me₄Si, 25 °C): 7.23 (1H, d, H2, J_{H2-H1}= 7.5 Hz); 4.82 (1H, dt, H1, J_{H1-H2} = 7.5 Hz, J_{H1-H3} = J_{H1-H3'} = 5.4 Hz); 2.60 (2H, m, H4); 2.29 (1H, m, H3); 2.20 (1H, m, H3'); 2.12 (3H, s, H5). δC (150 MHz, CDCl₃, Me₄Si, 25 °C): 174.2 (COOH); 157.1 (CONH, q, J_{C-F} = 38.2 Hz); 115.5 (CF₃, q, J_{C-F} = 288.8 Hz); 51.9 (C1); 30.2 (C3); 29.8 (C4); 15.5 (C5).

N-Trifluoroacetylglutamic acid (8) (white crystalline solid, 0.827 g, 68%).

δH (600 MHz, DMSO, Me₄Si, 25 °C): 12.60 (2H, br s, COOH); 9.67 (1H, d, H2, J_{H2-H1} = 7.9 Hz); 4.27 (1H, m, H1);
2.27 (2H, t, H-4, J_{H4-H3} = J_{H4-H3} = 7.3 Hz); 2.06 (1H, m, H3); 1.87 (1H, m, H3').

δC (150 MHz, DMSO, Me₄Si, 25 °C): 174.0 (C1-<u>C</u>OOH); 172.1 (C4-<u>C</u>OOH); 157.0 (CONH, q, J_{C-F} = 36.4 Hz); 116.2 (CF₃, q, J_{C-F} = 289.0 Hz); 52.3 (C1); 30.4 (C4); 25.6 (C3).

N-Trifluoroacetylproline (9) (white crystalline solid, 0.897 g, 85%).

 δ H (600 MHz, CDCl₃, Me₄Si, 25 °C): 4.72 (1H, br d, H1_{syn}, J = 8.0 Hz); 4.59 (1H, dd, H1_{anti}, J = 8.0 Hz, J = 2.9 Hz); 3.89-3.62 (2H, m, H4); 2.40-1.90 (4H, m, H2/H3).

 δ C (150 MHz, CDCl₃, Me₄Si, 25 °C): 176.2 and 175.8 (COOH); 156.2 and 155.7 (CONH, q, J_{C-F} = 37.9 Hz); 116.0 (CF₃, q, J_{C-F} = 287.0 Hz); 60.1 and 59.0 (C1); 48.0 and 47.3 (C4); 31.6, 28.6, 25.0, and 21.1 (C3 and C2).

N-Trifluoroacetyltryptophan (**10**) (light brown crystalline solid, 1.30 g, 87%).

 δ H (600 MHz, DMSO, Me₄Si, 25 °C): 13.06 (1H, s, H9); 10.83 (1H, s, COOH); 9.73 (1H, d, H2, J_{H2-H1} = 8.0 Hz); 7.53 (1H, d, H8, J_{H8-H7} = 7.6 Hz); 7.32 (1H, d, H5, J_{H5-H6} = 7.6 Hz); 7.12 (1H, s, H4); 7.05 (1H, t, H-7, J_{H7-H8} = J_{H7-H6} = 7.6 Hz); 6.97 (1H, t, H6, J_{H6-H7} = J_{H6-H5} = 7.6 Hz); 4.49 (1H, dt, H1, J_{H1-H2} = 8.0 Hz, J_{H1-H3} = J_{H1-H3}' = 4.2 Hz); 3.29 (1H, dd, H3, J_{H3-H3}' = 14.9 Hz; J_{H3-H1} = 4.2 Hz); 3.15 (1H, dd, H3', J_{H3'-H3} = 14.9 Hz; J_{H3'-H1} = 4.2 Hz). δ C (150 MHz, DMSO, Me₄Si, 25 °C): 172.2 (COOH); 156.8 (CONH, q, J_{C-F} = 36.1 Hz); 136.5 (<u>C</u>-C8); 127.3 (<u>C</u>-C5); 124.0 (C4); 121.5 (C7); 118.9 (C6); 118. 5 (C8); 116.2 (CF₃, q, J_{C-F} = 288.9 Hz); 111.9 (C5); 110.1 (C4-C); 54.1 (C1); 26.5 (C3/C3').

Qui

 δ H (600 MHz, CDCl₃, Me₄Si, 25 °C): 8.68 (1H, d, H2, J_{H2-H1} = 4.5 Hz); 7.97 (1H, d, H3, J_{H3-H4} = 8.5 Hz); 7.51 (1H, d, H1, J_{H1-H2} = 4.5 Hz); 7.31 (1H, dd, H4, J_{H4-H3} = 8.5 Hz, J_{H4-H5} = 2.7 Hz,); 7.22 (1H, d, H5, J_{H5-H4} = 2.7 Hz,); 5.73 (1H, ddd, H20, J_{H20-H22} = 17.1 Hz, J_{H20-H21} = 10.4 Hz, J_{H20-H17} = 7.5 Hz); 5.61 (1H, br s, H8); 4.96 (1H, dt, H22, J_{H22-H20} = 17.1 Hz, J_{H22-H21} = J_{H22-H17} = 1.1 Hz); 4.92 (1H, dt, H21, J_{H21-H20} = 10.4 Hz, J_{H21-H22} = J_{H21-H17} = 1.1 Hz); 3.87 (3H, s, OMe); 3.50 (1H, m, H16); 3.30 (1H, s, OH); 3.16 (1H, m, H9); 3.11 (1H, dd, H19, J_{H19-H18} = 14.0 Hz, J_{H19-H17} = 10.0 Hz); 2.71 (1H, m, H18); 2.69 (1H, m, H15); 2.30 (1H, m, H17); 1.84 (1H, m, H12); 1.76 (1H, m, H10); 1.75 (1H, m, H14); 1.56 (1H, m, H13); 1.53 (1H, m, H11).

δC (150 MHz, CDCl₃, Me₄Si, 25 °C): 157.7 (COMe); 147.6 (<u>C</u>-C8); 147.0 (C2); 144.3 (<u>C</u>-C3); 141.4 (C20); 131.6 (C3); 126.5 (<u>C</u>-C5); 121.6 (C4); 118.5 (C1); 114.5 (C22/21); 101.4 (C5); 71.9 (C8); 60.4 (C9); 56.8 (C18/19); 56.0 (OMe); 43.3 (C15/16); 39.9 (C17); 27.8 (C12); 27.4 (C10/11); 21.7 (C13/14).

 δ H (600 MHz, C₆D₆, Me₄Si, 25 °C): 8.58 (1H, d, H2, J_{H2-H1} = 4.3 Hz); 8.15 (1H, d, H3, J_{H3-H4} = 9.3 Hz); 7.39 (1H, d, H5, J_{H5-H4} = 2.9 Hz); 7.28 (1H, d, H-1, J_{H1-H2} = 4.3 Hz); 7.15 (1H, dd, H4, J_{H4-H3} = 9.3 Hz, J_{H4-H5} = 2.9 Hz); 5.49 (1H, ddd, H20, J_{H20-H22} = 17.2 Hz, J_{H20-H21} = 10.5 Hz, J_{H20-H17} = 8 Hz); 5.35 (1H, br s, H8); 4.82 (1H, dt, H22, J_{H22-H20} = 17.2 Hz, J_{H22-H21} = J_{H22-H17} = 1.5 Hz); 4.77 (1H, dt, H21, J_{H21-H20} = 10.5 Hz, J_{H21-H22} = J_{H21-H17} = 1.5 Hz); 3.48 (3H, s, OMe); 3.40 (1H, m, H16); 3.09 (1H, m, H9); 2.84 (1H, dd, H19, J_{H19-H18} = 13.8 Hz, J_{H19-H17} = 10.1 Hz); 2.50 (1H, m, H18); 2.45 (1H, m, H15); 1.94 (1H, m, H17); 1.77 (1H, m, H11); 1.58 (1H, m, H12); 1.58 (1H, m, H14); 1.46 (1H, m, H10); 1.17 (1H, m, H13).