Supporting information

A novel near-infrared fluorescent probe based on triphenylamine

derivatives for rapid and sensitive detection of heparin

Mingming Liu, Jian Cao *, Cuiping Huang, Meijuan Zhang, Yanan Li, Chuanxiao

Wang

School of Chemistry and Chemical Engineering, Shanghai University of Engineering

Science, 333 Longteng Road, Shanghai, 201600, P. R. China Fax: 86-21-67791214

E-mail: caoj@sues.edu.cn

Contents

1. The photophysical properties of TPA-P ⁺ 1
2. DFT optimized structure of TPA-P ⁺
3. The response of compound 3 to heparin
4. Stability of free TPA-P ⁺ and TPA-P ⁺ +heparin complex
5. The selectivity of TPA-P ⁺ +heparin complex to PRTM4
6. Reversibility of the "off-on-off" system constructed by TPA-P ⁺ +heparin+PRTM .5
7. Heparin sensing in serum containing 100 mM NaCl5
8. HRMS and NMR characterizations

1. The photophysical properties of **TPA-P**⁺

Figure S1.The fluorescence emission spectra of TPA-P⁺ and compound 3 in the water

(containing 1% DMSO).

Figure S2. (A) Changes in absorption spectra and (B) Normalized fluorescence emission spectra

of **TPA-P**⁺ (10 μ M) in different solvents.

solvent	Δf	λ_{abs}	λ_{em}	Stokes shift (cm ⁻¹)
Toluene	0.014	472	650	5802
CHCl ₃	0.148	509	677	4875
DCM	0.217	514	720	5566
EA	0.221	464	672	6670
THF	0.21	471	677	6460
DMSO	0.263	472	721	7317
MeCN	0.305	474	745	7674
EtOH	0.29	486	706	6412

Table S1. Parameters of the solvents

 Δf was chosen as the measure of polarity. ϵ was the static dielectric constant and n was the optical refractive index of the solvent.

(1)

Figure S3. The Lippert-Mataga plot of Stokes shift (Δv) of **TPA-P**⁺ versus Δf in different solvents.

2. DFT optimized structure of TPA-P⁺

Figure S4. Density functional theory (DFT) optimized structure of **TPA-P**⁺. In the ball-and-stick representation, hydrogen, carbon, nitrogen and oxygen are colored in white, gray, blue and green, red, respectively. The calculations are based on the optimized ground state geometry (S_0 state) at

the B3LYP/6-31g*/ level using Gaussian 09W.

3. The response of compound 3 to heparin

Figure S5. The response of compound 3 to heparin.

4. Stability of free **TPA-P**⁺ and **TPA-P**⁺+heparin complex

Figure S6. Time response of TPA-P+ (2.5 $\mu M)$ to heparin (2.0 nM) in the water (containing 1%

DMSO).

Figure S7. Effect of time (A) and pH (B) on free TPA-P⁺ and TPA-P⁺+heparin complex in the

water (containing 1% DMSO). $\lambda_{ex} = 470 \text{ nm}$

5. The selectivity of **TPA-P**⁺+heparin complex to PRTM

Figure S8. Selectivity of TPA-P++Heparin complex for sensing of PRTM over other possible

analytes including:1Valine (Val); 2 Histidine (His); 3 Glutathione (GSH); 4 Cystine (Cys); 5

Serine (Ser); 6 Tryptophen (Try); 7 NaCl; 8 KBr; 9 Protamine (PRTM). $\lambda_{ex} = 470 \text{ nm}$

6. Reversibility of the "off-on-off" system constructed by TPA-P++heparin+PRTM

Figure S9. Reversibility of TPA-P⁺ (5.0 μ M) in subsequent response to heparin (10 μ g/mL) and

PRTM (15 μ g/mL) in the water (containing 1% DMSO). $\lambda_{ex} = 470$ nm.

7. Heparin sensing in serum containing 100 µM NaCl

Figure S10. After adding 100 μM NaCl, emission spectral changes of $TPA\text{-}P^{+}(2.5~\mu M)$ upon

addition of heparin (16 µg/mL) in water (A) and human serum (B) (containing 1% DMSO)

8. HRMS and NMR characterizations

Figure S11. The ¹H NMR spectra of **TPA-P**⁺ in CDCl₃.

Figure S12. The ¹C NMR spectra of **TPA-P**⁺ in CDCl₃.

Figure S13. The HRMS spectra of TPA-P⁺.