1	Supporting Information				
2	An ultrasensitive electrochemical sensing platform based on silver				
3	nanoparticles anchored 3D reduced graphene oxide for rifampicin				
4	detection				
5	Qing Zhang ^{a,b,c} , Shangshang Ma ^{a,d} , Xin Zhuo ^b , Cong Wang ^b , Hongyan Wang ^b ,				
6	Yuying Xing ^b , Qingyuan Xue ^b and Keying Zhang ^{a,b,c*}				
7	^a Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education				
8	Institutes, Suzhou University, Suzhou 234000, China				
9	^b School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000,				
10	China				
11	^c State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem				
12	and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China				
13	^d School of Chemical Engineering, China University of Mining and Technology,				
14	Xuzhou, 221100, China				
15	*Corresponding authors:				
16	E-mail address: zhangky1983@163.com				

1 Table of Contents

2 1. Fig. S1. The SEM image of Ag NPs/GO composites.

3 2. Fig. S2. (A) DPV responses for different concentration RIF of human blood 4 samples in 0.1 M PBS (pH 7.0); (B) The calibration curve of I_p and RIF 5 concentrations.

- 6 3. Table S1. Comparison of fabricated sensors with other reported sensors.

-			-	
		Linear	LOD	5.4
Modified electrode	Method	range/(µM)	/(µM)	Ref.
Ni(OH) ₂ /RGO ^a /GCE	LSV ^b	0.004-10.0	0.0023	1
BV ^c /SPCE	LSV	0.2-310	0.014	2
PMel-Aunano ^d /GCE	LSV	0.08-15.00	0.03	3
MWCNTs ^e -Mo ₂ C-GCE	DPV	0.5-74	0.09	4
Au/PVP-				
AgNPs/PANSAf/EG-	DPV	2-14	0.05	5
CYP2E1 ^g				
Pencil graphite electrode	DPASV ^h	0.019-1.19	0.013	6
ZrO2@chitosan/GCE	DPV	0.015-547.4	0.0075	7
TiO ₂ /rGO/GCE	DPV	0.01-0.1 (nM)	0.03	8
SPIONs-CNTs ⁱ /GCE	i-t ^j	0.02-0.06	1.178	9
Ag NPs/3D rGO/GCE	DPV	0.01 nM-45 µM	0.810 nM	this work

Table S1. Comparison of fabricated sensors with other reported sensors.

^a Reduced graphene oxide; ^b Linear sweep voltammetry; ^c BiVO₄ microspheres; ^d gold
^a nanoparticles/poly-melamine nanocomposite; ^e Multiwalled carbon nanotubes; ^f
^f polyvinylpyrrolidone/silver nanoparticles/poly(8-anilino-1-naphthalene sulphonic acid; ^g
^g cytochrome P450-2E1; ^h Differential pulse adsorptive stripping voltammetry; ⁱ Iron oxide carbon
^a nanotubes; ^j Amperometry.

2 **References**

- 3 (1) S. Rastgar and S. Shahrokhian, Talanta, 2014, 119, 156-163.
- 4 (2) V. Vinothkumar, A. Sangili, S. M. Chen and M. Abinaya, Colloid. Surface. A,
 5 2021, 624, 126849.
- 6 (3) S. Amidia, Y. H. Ardakani, M. Amiri-Aref, E. Ranjbari, Z. Sepehri and H.
 7 Bagheri, RSC Adv., 2017, 7, 40111-40118.
- 8 (4) M. A. A. Lomillo, O. D. Renedo and M. J. A. Mart nez, Electrochim. Acta,
 9 2005, 50, 1807-1811.
- 10 (5) R. F. Ajayi, U. Sidwaba, U. Feleni, S. F. Douman, O. Tovide, S. Botha, P. Baker,
- 11 X. G. Fuku, S. Hamid and T. T. Waryo, Electrochim. Acta, 2014, 128, 149-155.
- 12 (6) A. N. Kawde, Y. Temerk and N. Farhan, Acta Chim. Slov., 2014, 61, 398-405.
- 13 (7) T. W. Chen, A. S. Vasantha, S. M. Chen, D. A. Al Farraj, M. S. Elshikh, R. M.
- 14 Alkufeidy and M. M. Al, Ultrason. Sonochem., 2019, 59, 104718.
- 15 (8) Y. V. M. Reddy, B. Sravani, T. uczak, K. Mallikarjuna and G. Madhavi,
 16 Colloid. Surface. A, 2021, 608, 125533.
- 17 (9) K. Bano, S. Z. Bajwa, A. Ihsan, I. Hussain, N. Jameel, A. Rehman, A. Taj, S.
- 18 Younus, M. Zubair Iqbal, F. K. Butt and M. Saeed, J. Nanosci. Nanotechnol., 2020,19 20, 2130-2137.