Supporting Information

A new mitochondria-targeted fluorescent probe for exogenous and endogenous superoxide anion imaging in living cells and pneumonia tissue

Ya-Xi Ye^{*a*}, Jian-Cheng Pan^{*a*}, Xin-Yue Chen^{*a*}, Li Jiang^{*c*}, Qing-Cai Jiao^{*a*}, Hai-Liang Zhu^{*a*,*}, Jun-Zhong Liu^{*b*,*}, Zhong-Chang Wang^{*a*,*}

^aState Key Laboratory of Pharmaceutical Biotechnology and Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China; ^bNanjing Institute for Comprehensive Utilization of Wild Plants, CHINA CO-OP, 211111, Nanjing, China; ^cState Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China

Contents

¹ H NMR spectra of 1	Fig.	S1
¹ H NMR spectra of Mito-YX	.Fig.	S2
¹³ C NMR spectra of Mito-YX	.Fig.	S 3
TOF-MS of Mito-YX	.Fig.	S4
TOF-MS of the reaction product	.Fig.	S 5
¹ H NMR data of Mito-YX and corresponding compounds	.Fig.	S6
HPLC chromatogram changes	.Fig.	S7
The colocalization experiment	.Fig.	S8

Fig. S3. ¹³C NMR spectra of Mito-YX (DMSO- d_6).

Fig. S4. TOF-MS of Mito-YX calculated for $C_{17}H_{17}BNO_2S^+$ [M]⁺, 311.2; found, 311.1091.

Fig. S5. TOF-MS of the reaction product of Mito-YX after treatment with O_2^{-} .

Fig. S6. ¹H NMR data of Mito-YX and corresponding compounds after reacting with O_2 ⁻.

Fig. S7. HPLC chromatogram changes of 10 μ M Mito-Y (a) and 10 μ M Mito-YX in the absence (b) and presence (c) of 700 μ M KO₂.

Fig. S8. CLSM images of MCF-7 cells co-cultured with (a) Mito Tracker Deep Red FM (100 nM, red channel); (b) **Mito-YX** (10 μ M, green channel, 100 μ M KO₂). (c) Overlay image of (a), (b); (d) Intensity correlation plot of Mito Tracker Deep Red FM and **Mito-YX**, R² = 0.7627; (F) Intensity profile of the linear ROI across the cell (white line in images panels b–c). green channel: λ em = 530-600 nm, λ ex =488 nm; red channel: λ em = 650-670 nm, λ ex =644 nm. Scale bar: 15 μ m.

The Fluorescent quantum yield of **Mito-Y** was studied in 20% ethanol solution using Rhodamine B (Φ s=0.89 in ethanol) as a standard. The Fluorescent quantum yields were determined based on the equation: $\Phi_u = \left[(A_s F_u n^2) / (A_u F_s n_0^2) \right] \Phi_s$ $(\Phi_u and \Phi_s:$ the fluorescent quantum yield of **Mito-Y** and Rhodamine B, $A_u and A_s$: the absorbance of **Mito-Y** and Rhodamine B respectively, $F_u and F_s$: the integrated fluorescence intensity of **Mito-Y** and Rhodamine B at their excitation wavelength, n presents the refractive index of solvent. The fluorescent quantum yield of **Mito-Y** is 0.23.

$$\begin{split} \Phi_s = 0.89 \ , \ A_s = 0.249 \ , \ F_s = & 122297.444 \ , \ n_0 = 1.33 \ ; \ A_u = 0.131, \qquad F_u = \\ 17356.607 \ , \ n = 1.365; \ calculated \ \Phi_u = 0.23. \end{split}$$

Table.1 The comparison of reported work with this work

Probe	Targetin g effect	Ex/Em (nm)	δ	LOD	Time	Application	ref
CF ₃ -S O	No	λex=365/720 nm; λem=500 nm	/	1 nM	5 min	in buffer, living cells and tissues.	[1]
or h O' Q of h of h O' Q of h h	mitochon drion	$\lambda_{\rm ex} = 490$ nm; $\lambda_{\rm em} = 652/545$ nm	/	20.5 nM	3 min	in butter, living cells, LPS- induced mice	[2]
	No	λ_{ex} =345/740 nm; λ_{em} =470 nm	/	150 nM	25 min	in buffer, living cells and fresh rat hippocampa l tissues	[3]
$\begin{array}{c} NCS \\ O_2 O O_2 $	mitochon drion	$\lambda_{\rm ex}$ = 494 nm, $\lambda_{\rm em}$ =520 nm	/	0.65 μM	< 5 min	in buffer, living cells	[4]
CI O O CI CI CI CI CI CI CI CI CI CI CI CI CI	mitochon drion	$\lambda_{\rm ex}$ = 660 nm, $\lambda_{\rm em}$ =719 nm	0.55	0.24 μM	/	in buffer, living cells and drug- induced AKI mouse	[5]
F, F N Se N N N Se	No	$\lambda_{\rm ex}$ = 505 nm, $\lambda_{\rm em}$ =526 nm	/	4.42 μM	40 min	in buffer and living cells	[6]
	mitochon drion	$\lambda_{\rm ex}$ = 415 nm, $\lambda_{\rm em}$ =540/475 nm	/	0.37 μM	132 s	in buffer, living cells and inflammator y Daphnia magna	[7]
N N H	No	$\lambda_{ex} = 430/820$ nm, $\lambda_{em} = 550$ nm	0.19 7/9	13 nM	100 s	in buffer, living cells, zebrafish and inflammator	[8]

y mice

	mitochon drion	$\lambda_{\rm ex}$ = 410 nm, $\lambda_{\rm em}$ =540/475 nm	EtOH:0.924 DMSO:0.791 PBS:0.497	/	5 min	in buffer, living cells, and inflammator y mice	[9]
ONN ON OCF3	lysosome	$\lambda_{ex} = 450/730$ nm, $\lambda_{em} = 556$ nm	/	0.047 nM	60 min	in buffer, living cells, zebrafish and pneumonia tissue	[10]
+0+0-0-0-6	mitochon drion	$\lambda_{\rm ex} = 418$ nm, $\lambda_{\rm em} = 635$ nm	/	22.2 nM	20 min	in buffer and living cells	[11]
	No	$\lambda_{\rm ex}$ =580/800nm , $\lambda_{\rm em}$ =638 nm	/	2.09 μM	150 s	in buffer, living cells and diabetic mice	[12]
C − C − C − C − C − C − C − C − C − C −	mitochon drion	$\lambda_{\rm ex}$ =500nm, $\lambda_{\rm em}$ =645 nm	/	10 nM	/	in buffer and living cells	[13]
S S S S S S S S S S S S S S S S S S S	endoplas mic reticulum	$\lambda_{\rm ex}$ =500/800nm , $\lambda_{\rm em}$ =558 nm	0.41	0.12 μM	6 min	in buffer, living cells and zebrafish	[14]
CT-NH PPPh ₃	mitochon drion	$\lambda_{\rm ex}$ =483/800nm , $\lambda_{\rm em}$ =512 nm	0.1	9.5 nM	/	in buffer, living cells and inflammator y mice	[15]
S N ⁺ I ⁻ OH	mitochon drion	$\lambda_{\rm ex}$ =482nm, $\lambda_{\rm em}$ =565nm	0.23	0.24 nM	4 min	in buffer, living cells and pneumonia tissue	This wor k

[1] D. Lu, L. Zhou, R. Wang, X.B. Zhang, L. He, J. Zhang, X. Hu, W. Tan, A two-photon fluorescent probe for endogenous superoxide anion radical detection and imaging in living cells and tissues, *Sensor Actuat B-Chem.* 250 (2017) 259-266.

[2] J. Wang, L. Liu, W. Xu, Z. Yang, Y. Yan, X. Xie, Y. Wang, T. Yi, C. Wang, J. Hua, Mitochondriatargeted Ratiometric Fluorescent Probe Based on Diketopyrrolopyrrole for Detecting and Imaging of Endogenous Superoxide Anion in Vitro and in Vivo, *Anal. Chem.* 91 (2019), 5786-5793.

[3] L. Chen, M.K. Cho, D. Wu, H.M. Kim, J. Yoon, Two-Photon Fluorescence Probe for Selective Monitoring of Superoxide in Live Cells and Tissues, *Anal. Chem.* 91 (2019), 14691-14696.

[4] Fang, Si, Yang, Liu, Kelu, Yan, Wenwan, Zhong, A mitochondrion targeting fluorescent probe for imaging of intracellular superoxide radicals, *Chem. Commun.* 51 (2015), 7931-7934.

[5] Y. Lv, D. Cheng, D. Su, M. Chen, B.-C. Yin, L. Yuan, X.-B. Zhang, Visualization of oxidative injury in the mouse kidney using selective superoxide anion fluorescent probes, *Chem. Sci.* 9 (2018) 7606-7613.

[6] A. Ppd, B. An, B. Skm, A. Stm, Phenylselenyl containing turn-on dibodipy probe for selective detection of superoxide in mammalian breast cancer cell line - ScienceDirect, *Sensor Actuat B-Chem*. 281 (2019) 8-13.

[7] Z. Zhang, J. Fan, Y. Zhao, Y. Kang, J. Du, X. Peng, Mitochondria-Accessing Ratiometric Fluorescent Probe for Imaging Endogenous Superoxide Anion in Live Cells and Daphnia magna, *Acs Sensors* 3 (2018) 735-741.

[8] R.Q. Li, Z.Q. Mao, L. Rong, N. Wu, Z.H. Liu, A Two-Photon Fluorescent Probe for Exogenous and Endogenous Superoxide Anion Imaging in vitro and in vivo, *Biosens. Bioelectron.* 87 (2017) 73-80.

[9] Z.A. Ning, H.A. Yun, A. Qt, B. Yw, Z.A. Qiang, H.A. Ping, A mitochondrial targeting two-channel responsive fluorescence probe for imaging the superoxide radical anion in vitro and in vivo, *Talanta* 194 (2019) 79-85.

[10] S. Ma, Y. Ma, Q. Liu, W. Lin, A two-photon fluorescent probe with lysosome targetability for imaging endogenous superoxide anion in living cells, zebrafish and pneumonia tissue, *Sensor Actuat B-Chem.* 332 (2021) 129523.

[11] A. Cx, C. Wxb, A. Zy, A. Sl, W. Yu, A. Jh, A turn-on mitochondria-targeted near-infrared fluorescent probe with a large Stokes shift for detecting and imaging endogenous superoxide anion in cells, *J. Photoch. Photobio. A* 415 (2021), 113304.

[12] W. Song, B. Dong, Y. Lu, Z. Li, W. Lin, Two-photon Fluorescent Sensors for Visual Detection of Abnormal Superoxide Anion in Diabetes Mice, *Sensor Actuat B-Chem.* 332 (2021) 129537.

[13] J.A. Shan, A. Jz, Y.B. Si, A. Xm, A highly responsive, sensitive NIR fluorescent probe for imaging of superoxide anion in mitochondria of oral cancer cells, *Talanta* 222 (2021), 121566.

[14] Y. Lu, R. Wang, Y. Sun, M. Tian, B. Dong, Endoplasmic reticulum-specific fluorescent probe for the two-photon imaging of endogenous superoxide anion (O_2^{-}) in live cells and zebrafishes, *Talanta* 225 (2020) 122020.

[15] L. Ping, Z. Wen, K. Li, L. Xiao, T. Bo, Mitochondria-Targeted Reaction-Based Two-Photon Fluorescent Probe for Imaging of Superoxide Anion in Live Cells and in Vivo, *Anal. Chem.* 85 (2013) 9877-9881.