In situ Synthesis of Chiral AuNCs with Aggregation-Induced Emission Using Glutathione and Ceria Precursor Nanosheets for Glutathione Biosensing

Mohamed Ibrahim Halawa ^{a,b,c,d,e}, Guoxing Wu^a, Alaa Eldin Salem^e, Lei Su^{b,*}, Bing Shi Li

^{a,*}, Xueji Zhang ^{b,c,*}

^a College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China

^b Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen 518060, Peoples R China

^c College of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science center, Shenzhen University, Shenzhen 518060, China

^d Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Mansoura, Egypt. Email: m_halawa88@hotmail.com

^e Department of chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates

* Corresponding Author. E-mails: sulei@szu.edu.cn, phbingsl@szu.edu.cn; zhangxueji@szu.edu.cn

Chemicals and Materials.

Cerium(III) nitrate hexahydrate (Ce(NO₃)₃·6H₂O), ammonium bicarbonate and sodium hydroxide were received from Alfa Aesar Co., Ltd., Aladdin Industrial Corporation and Xilong Scientific Co., Ltd; respectively. Gold(III) chloride trihydrate (HAuCl₄.3H₂O) and glutathione(GSH) were received from Energy Chemical Co., Ltd. 20.0 mg of the assynthesized cerium carbonate Ce(CO₃)₂ NS were dispersed in 2.0 mL distilled water by ultrasonication for preparing a colloidal stock solution of (10 mg/mL).

Instruments.

Photoluminescence (PL) and Circular Dichroism (CD) spectra of the NCs samples were recorded by a HITACHI F7000 and Bio-logic MOS-450 photospectrometer; respectively. High Resolution Transmission Electron Microscopic (HRTEM) images of AuNCs and $Ce(CO_3)_2$ NS were obtained using on a JEOL JEM-2100 microscope biased at 200 kV. Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of $Ce(CO_3)_2$ NS were taken on a BRUKER Multi Mode 8 and JEOL JSM-7800F, respectively. X-ray photoelectron spectroscopy (XPS) measurements were performed on a Thermo Fisher Scientific K-Alpha+ spectrometer. X-ray powder diffraction (XRD) patterns were recorded on a PANalytical B.V. Empyrean X-ray diffractometer with Cu Karadiation(λ = 0.154056 nm).

Figure S1. Absorption spectrum of $Ce(CO_3)_2$ NS solution.

Figure S2. SAED images of insitu synthesized Au@Au(I)-SG NCs (A) and Ce(CO₃)₂ NS (B)

Figure S3. Absorption spectra for solution of Au(I)-SG oligomers in the absence (black line) and presence of Ce^{3+} ions (green line), or GSH (light magenta line) and absorption spectra for solutions of the conjugate probe of Au(I)-SG/Ce(CO₃)₂ NS in the absence (red line) and presence of GSH (purple line).

Figure S4. The Au $(4f_{7/2})$ spectrum of the as-synthesized luminescent Au(0)@Au(I)-SG nanoclusters

Figure S5. Anisotropy factor spectra for solution of Au(I)-SG oligomers in presence of 50 μ M Ce³⁺ ions and solutions of the conjugate probe of Au(I)-SG/Ce(CO₃)₂ NS in presence of GSH (400, 600, 800 μ M).

Table S1. XPS data	of the synthesized	$Ce(CO_3)_2 NS$
--------------------	--------------------	-----------------

		Height Area (P)			Atomic	
Name	Peak BE	CPS	FWHM eV	CPS.eV	Area (N)	%
C1s-Ce4s	284.8	14082.06	3.04	85384.39	1197.29	40.95
Ols	531.07	73645.64	3.19	246206.39	1427.36	48.82
Ce3d	884.41	66153.56	6.74	782059.17	298.78	10.22

Table S2: Repeatability and reproducibility results for GSH sensing using Au(I)-SG/Ce(CO₃)₂ NS probe

_	GSH amount (µM)	% Recovery ^a ± % RSD		
		Intra-day precision	Inter-day precision	
	200	99.13 ± 1.90	98.84 ± 2.31	
	500	99.98 ± 1.75	101.35 ± 2.84	
	1000	100.50 ± 1.82	100.90 ± 2.62	

^a refers to average value of three assays.

Technique	Applied Materials*	Linear range (µM)	LO D	Ref.
Colorimetry	AgNPs	0-400	4.11	1
Colorimetry	Coumarin derivatives	0 -180	6.84	2
Colorimetry	Cu ²⁺ /Imidazole derivatives	7.5-37.5	2.98	3
Colorimetry	Cytidine-AuNCs	0-400	10	4
Colorimetry	NDP	0-80×10 ³	178	5
Chronoamperometry	AuNPs-PEDOT/ GCE	0.5-10	0.1	6
CV	AuNPs/Al ₂ O ₃ .TiO ₂ NPs /GCE	5-50, 100-750		7
DPV	PDI-SH/ CPE	$(0.5-5) \times 10^3$	17	8
CV	Graphene modified-SPCE	1-100	8.01	9
HPLC-ED	Reversed C18- HPLC	5.1-325.4	2.3	10
Fluorimetry	Au(I)-SG/Ce(CO ₃) ₂ NS	0-1000	1.02	Our work

Table S3. Comparison of AIE-based probe for GSH sensing with some previous methods.

* AgNPs, NDP, AuNPs, PDI-SH, GCE, PEDOT, CPE and SPCE represent silver nanoparticles, naphthalene derivate containing piazselenole, gold nanoparticles, thiolated perylene diimides, glassy carbon electrode, poly(3,4)ethylene dioxythiophene, carbon paste electrode and screen printed carbon electrode; respectively.

Technique	Applied Materials*	Linear range (µM)	LOD (µM)	Ref.
ECL	GO/CdTe QDs	24-214	8.3	11
ECL	CdSe/ZnS QDs	10-180	1.5	12
CL	Peroxidase/luminol-H ₂ O ₂	0.75-30	0.75	13
Fluorimetry	N-GQDs/MoS ₂	400-4000	2.47	14
Fluorimetry	MnO ₂ /UCNPs	N/A	0.9	15
Fluorimetry	TAT-probe	0-12	5.15	16
Fluorimetry	DTFN	0-500	1.03	17
Fluorimetry	AuNCs/MnO ₂ NS	0-500	4	18
Fluorimetry	TP-N	0-50	1.53	19
Fluorimetry	N,S-CDs@Cu ²⁺	10-150	3.74	20
Fluorimetry	NP-BO-HEM	0-200	1.37	21
Fluorimetry	Au(I)-SG/Ce(CO ₃) ₂ NS	0-1000	1.02	Our work

Table S4. Comparison of AIE-based probe for GSH sensing with other previous luminescent approaches.

* GO, QD, GQDs, UCNPs, TAT-probe, DTFN, TP-N and CDs, refer to, graphene oxide, quantum dots, graphene quantum dots, upconversion nanoparticles, two-photon biothiols probe, dual-targeting fluorescence nanoprobe, phthalazinetrione derivative, 2-(benzo[d]thiazol-2-yl)-4-hydroxyphthalazin-1(2H)-one hydrate-dimer, and carbon dots, respectively.

References

- 1. I. Sanskriti and K. K. Upadhyay, *New J. Chem.*, 2017, **41**, 4316-4321.
- 2. K. Xiong, F. Huo, J. Chao, Y. Zhang and C. Yin, *Anal. Chem.*, 2019, **91**, 1472-1478.
- 3. M. S. Kim, J. M. Jung, J. H. Kang, H. M. Ahn, P.-G. Kim and C. Kim, *Tetrahedron*, 2017, **73**, 4750-4757.
- 4. C. Jiang, C. Zhang, J. Song, X. Ji and W. Wang, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2021, **250**, 119316.
- 5. X. Zeng, X. Zhang, B. Zhu, H. Jia, W. Yang, Y. Li and J. Xue, *Sensors Actuators B: Chem.*, 2011, **159**, 142-147.
- 6. R. Rajaram, P. Kanagavalli, S. Senthilkumar and J. Mathiyarasu, *Biotechnology and Bioprocess Engineering*, 2020, **25**, 715-723.
- 7. M. Cubukcu, F. N. Ertas and U. Anik, *Current Analytical Chemistry*, 2012, **8**, 351-357.
- 8. B. Perk, Y. T. Buyuksunetci, O. Hakli, C. Xue, Q. Li and U. Anik, *Chemistryselect*, 2021, **6**, 11648-11652.
- 9. W. T. Wahyuni, E. Rohaeti and D. R. Sari, IOP Conference Series: Earth and Environmental Science,

2018, **187**, 012078.

- 10. Z. Buchtova, Z. Lackova, J. Kudr, Z. Zitka, J. Skoda and O. Zitka, *Molecules*, 2018, 23, 2504.
- 11. Y. Wang, J. Lu, L. Tang, H. Chang and J. Li, *Analytical chemistry* 2009, **81**, 9710-9715.
- 12. L. Dennany, M. Gerlach, S. O'Carroll, T. E. Keyes, R. J. Forster and P. Bertoncello, *Journal of Materials Chemistry* 2011, **21**, 13984-13990.
- 13. T. Kamidate and H. Watanabe, *Talanta*, 1996, **43**, 1733-1738.
- 14. S. Tang, C. Yu, L. Qian, C. Zhou, Z. Zhen, B. Liu, X. Cheng and R. Cheng, *Microchem. J.*, 2021, **171**.
- R. Deng, X. Xie, M. Vendrell, Y.-T. Chang and X. Liu, *Journal of the American Chemical Society*, 2011, 133, 20168-20171.
- 16. P. Su, Z. Zhu, Y. Tian, L. Liang, W. Wu, J. Cao, B. Cheng, W. Liu and Y. Tang, *Talanta*, 2020, **218**.
- 17. H. Wang, P. Zhang, C. Zhang, S. Chen, R. Zeng, J. Cui and J. Chen, *Materials Advances*, 2020, **1**, 1739-1744.
- 18. S. Lin, H. Cheng, Q. Ouyang and H. Wei, *Analytical Methods*, 2016, **8**, 3935-3940.
- 19. N.-N. Li, N.-N. Shi, D. Yang, R.-X. Wu, C.-G. Xu, B. Zhu, F. Shao, X. Zhang, S.-Y. Bi and Y.-H. Fan, *J. Mol. Liq.*, 2021, **342**.
- 20. X. Sun, C. Wang, P. Li, Z. Shao, J. Xia, Q. Liu, F. Shen and Y. Fang, *Food Chem.*, 2022, **372**.
- 21. L. Jia, L.-Y. Niu and Q.-Z. Yang, *Anal. Chem.*, 2020, **92**, 10800-10806.