Supplymentary Material

Contents

- 1. Generation of ROS
- 2. Figure S1. FTIR spectra of EY/UiO-66-NH₂.
- 3. Figure S2. UV-vis absorption spectra and the corresponding linear fitting of (A) NH₂-H₂BDC molecule absorbance at 366 nm, (B) EY molecule absorbance at 523 nm and (C) UV-vis spectra after digestion procedures for EY/UiO-66-NH₂ (5 mg/mL) with NaOH/DMF(v:v=1:1).
- 4. Table S1. The feed ratio and actual doping content of EY/UiO-66-NH₂
- Figure S3. (A) Effect of pH and (B) contact time to the fluorescent intensity ratio I_{533nm}/I_{432nm} of EY/UiO-66-NH₂ suspension.
- 6. Figure S4. PXRD patterns of EY/UiO-66-NH₂ in PBS (pH=7.4, 10 mM) for different time.
- 7. Figure S5. Fluorescence intensity ratio I_{533nm}/I_{432nm} of EY/UiO-66-NH₂ after adding different foreign substances in the absence (black) and presence (red) of 10⁻⁴ mol/L ClO⁻.
- 8. Figure S6. (A) PXRD images and (B) IR spectra and (C) UV/vis spectra and (D) time-resolved fluorescence decays of EY/UiO-66-NH₂ in the presence and absence of 10⁻⁴ mol/L ClO⁻.
- 9. Figure S7. (A) Fluorescence response of EY (50 µg/mL) toward various ions (10 mM) and (B) toward various ROS species (50 µM (ClO⁻, ¹O₂, OH⁻, ONOO⁻), 50 mM H₂O₂, 5 mM O₂⁻⁻). (C) Fluorescence response of EY toward various amount of ClO⁻. λ_{ex} = 467 nm, slid width, 1.5 nm/3 nm.
- 10. Figure S8. Viability of L02, Hela and Raw264.7 cells after incubated with various concentrations of EY/UiO-66-NH₂ after 24 h.
- 11. Figure S9. Confocal fluorescence imaging of exogenous ClO⁻ in L02 cells. (A) Bioimaging of

L02 cells without any treatment; (B) Bioimaging of L02 cells incubated with EY/UiO-66-NH₂

(50 μ g/mL) for 5 hours at 37°C and (C) further incubated with 100 μ M NaClO.

12. Table S2. Comparison of different fluorescence methods for hypochlorite sensing

13. Reference

Generation of ROS

ROS species were obtained according to previous work ^{1, 2}. ClO⁻ was diluted from NaClO storage solution. \cdot OH was prepared by Fenton reaction of Fe²⁺ and H₂O₂ and \cdot OH has the same concentration as Fe²⁺. H₂O₂ was acquired from 30% hydrogen peroxide. O₂.⁻ was prepared from pyrogallol autoxidation assay and ¹O₂ was obtained from the reaction between NaClO and H₂O₂. To prepare ONOO-, sodium sodium nitrite (0.6 M) and hydrogen peroxide (0.7 M) was mixed and the mixture was then acidified with hydrochloric acid solution (0.6 M), following by sodium hydroxide solution (1.5 M) to make the solution alkaline.

Figure S1. FTIR spectra of EY/UiO-66-NH₂.

Figure S2. UV-vis absorption spectra and the corresponding linear fitting of (A) NH₂-H₂BDC molecule absorbance at 366 nm, (B) EY molecule absorbance at 523 nm and (C) UV-vis spectra after digestion procedures for EY/UiO-66-NH₂ (5 mg/mL) with NaOH/DMF(v:v=1:1).

The feed ratio of EY/UiO-66-NH ₂	Absorbance after digestion and dilution	The actual doping content of EY/UiO-66-NH ₂
1:0.125	0.1295	1:0.0013
1:0.3	0.2515	1:0.011
1:0.5	1.1335	1:0.079
1:0.8	1.4429	1:0.068
1:1	1.6061	1:0.12
1:2	0.9857	1:0.1
1:3.5	0.3324	1:0.017

Table S1 The feed ratio and actual doping content of EY/UiO-66-NH $_2$

Figure S3. (A) Effect of pH and (B) contact time to the fluorescent intensity ratio I_{533nm}/I_{432nm} of

EY/UiO-66-NH₂ suspension.

Figure S4. PXRD patterns of EY/UiO-66-NH₂ in PBS (pH=7.4, 10 mM) for different time.

Figure S5. Fluorescence intensity ratio I_{533nm}/I_{432nm} of EY/UiO-66-NH₂ after adding different

foreign substances in the absence (black) and presence (red) of 10^{-4} mol/L ClO⁻.

Figure S6. (A) PXRD images and (B) IR spectra and (C) UV/vis spectra and (D) time-resolved

fluorescence decays of EY/UiO-66-NH_2 in the presence and absence of 10⁻⁴ mol/L ClO⁻.

Figure S7. (A) Fluorescence response of EY (50 μ g/mL) toward various ions (10 mM) and (B) toward various ROS species (50 μ M (ClO-, O₂, OH·, ONOO⁻), 50 mM H₂O₂, 5 mM O₂⁻⁻). (C) Fluorescence response of EY toward various amount of ClO⁻. λ_{ex} =467 nm, slid width, 1.5nm/3nm.

Figure S8. Viability of L02, Hela and Raw264.7 cells after incubated with various concentrations

of EY/UiO-66-NH $_2$ after 24 h.

Figure S9. Confocal fluorescence imaging of exogenous ClO⁻ in L02 cells. (A) Bioimaging of L02 cells without any treatment; (B) Bioimaging of L02 cells incubated with EY/UiO-66-NH₂ (50 μ g/mL) for 5 hours at 37°C and (C) further incubated with 100 μ M NaClO for 2h.

Probe	Output	Detection limit	Linear range	Ref
	signal	(nM)	(μΜ)	
UiO-68-ol	OFF	100	0.1-100	3
${[Eu_2Cu (IN)_5(CO_3) (H_2O)]}$	OFF	10000	10-400	4
AF@MOF801	OFF	52	0-7	5
UiO-68-PT	ON	280	0-80	6
AuNCs@NMOF	ON	30	0.08-1000	7
CD/CCM@ZIF-8	Ratiometric,	67	0.1-50	8
	FRET			
PDA/Eu/PDA-UiO-66-NH ₂ (x)	Ratiometric,	100	0.1-60	9
	ON			
NH ₂ -MIL-53(Al)	OFF	40	0.05-15	10
PDA-EuBBA-PEG-DBA-	OFF	0.133	0-100	11
Fe ₃ O ₄ @ZIF-8				
Hf-UiO-66-(NH ₂) ₂ MOF	OFF	9	100-1000	12
NH ₂ -Cu-MOF	OFF	360	0-12.5	13
UiO-66-NH ₂	Ratiometric,	63.8	0.1-150	14
	ON			
EY/UiO-66-NH ₂	Ratiometric,	46.4	0.1-200	This work
	ON			

Table S2. Comparison of different sensors for hypochlorite sensing

References

- 1 Y. J. Ma, G. H. Xu, F. D. Wei, Y. Cen, X. M. Xu, M. L. Shi, X. Cheng, Y. Y. Chai, M. Sohail, and Q. Hu, ACS Appl. Mater. Interfaces. 2018, **10**, 20801-20805.
- 2 P. F. Xing, K. Gao, B. Wang, J. Gao, H. Yan, J. Wen, W. S. Li, Y. Q. Xu, H. J. Li, J. X. Chen, W. Wang and S. G. Sun, 2016, 52, 5064-5066.
- 3 Y. A. Li, S. Yang, Q. Y. Li, J. P. Ma, S. Zhang, Y. B. Dong, Inorg. Chem. 2017, 56, 13241-13248.
- 4 H. Xu, C. S. Cao, J. Z. Xue, Y. Xu, B. Zhai, B. Zhao, Chem.-Eur. J. 2018, 24, 10296.
- 5 Y. Ye, L. Zhao, S. Hu, A. Liang, Y. Li, Q. Zhuang, G. Tao, J. Gu, Dalton Trans. 2019, 48, 2617-2625.
- 6 Q. Y. Li, Y. A. Li, Q. Guan, W. Y. Li, X. J. Dong, Y. B. Dong, Inorg. Chem. 2019, 58, 9890-9896.
- 7 X. Cao, S. Cheng, Y. You, S. Zhang, Y. Xian, Anal. Chim. Acta. 2019, 1092, 108-116.
- 8 H. Tan, X. Wu, Y. Weng, Y. Lu, Z. Z. Huang, Anal. Chem. 2020, 92, 3447-3454.
- 9 Y. N. Zeng, H. Q. Zheng, X. H. He, G. J. Cao, B. Wang, K. J. Wu, Z. J. Lin, Dalton Trans., 2020, 49, 9680-9688.
- 10 C. R. Li, J. Hai, S. L. Li, B. D. Wang, Z. Y. Yang, Nanoscale, 2018, 10, 8667-8676.
- 11 T. Lu, L. Zhang, M. Sun, D. Deng, Y. Su and Y. Lv, Anal. Chem. 2016, 88, 3413-3420.
- 12 S. Nandi, S. Biswas, Microporous and Mesoporous Materials. 2020, 299, 110116.
- 13 P. P. Huo, Z. J. Li, C. B. Fan, S. Z. Pu, New J. Chem., 2020, 44, 19753.
- 14 F. F. Yu, T. Y. Du, Y. H. Wang, C. M. Li, Z. J. Qin, H. J. Jiang, X. M. Wang, Sensors & Actuators: B. Chemical. 2022, **353**, 131032.