Electronic supplementary information (ESI)

Mass spectrometry-based quantitation combined with timedependent metabolomics to discover metabolic features in human neurogenesis using neural constructs generated from neural progenitor cells

Xin Wang,* Zhenye Gao and Wenxiu Zhou

School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

*Corresponding Author E-mail: xinwang2020@sjtu.edu.cn

Table of Contents

1. Human neural constructs	
Fig. S1 Schematic representation and immunofluorescence images.	Page S-2
2. NAA and NAG quantitation	
Fig. S2 The typical MRM chromatograms of NAA, NAG and NAA-D3.	Page S-3
Table S1 Optimized MRM parameters for NAA and NAG quantitation.	Page S-4
Table S2 The precisions and recoveries for the measurements of NAA and NAG.	Page S-4
3. Time-dependent metabolomic study during neurodevelopment	
Fig. S3 Typical total-ion chromatograms of day 18 and day 0 (control) samples.	Page S-5
Fig. S4 Separation of day 18 and day 0 (control) samples by PCA.	Page S-5
Table S3 Metabolite profiling results of time-dependent metabolomics.	Page S-6

Fig. S1 (A) Schematic representation of the human neural constructs generated from neural progenitor cells; (B) representative immunofluorescence images illustrating β 3-tubulin (neurons, green), GFAP (glial cells, red), and DAPI (nuclei, blue) expression for neural constructs after 6 days, 10 days, 14 days, 18 days, 22 days and 28 days of culture on PEG hydrogels (Scale bar: 50 µm).

Fig. S2 The typical MRM chromatograms of NAA, NAG and NAA-D3. The transitions of m/z 188.1 \rightarrow 102.1 and m/z 174.1 \rightarrow 58.1 were used for the quantitation of NAG and NAA, respectively; the ions at m/z 128.1 and m/z 88.1 were selected as qualitative ions for NAG and NAA. NAA-D3 was employed as the internal standard for quantitation.

Analyte	Quantitation			Confirmation		
	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy	Precursor ion (<i>m/z</i>)	Product ion (m/z)	Collision energy
NAA	174.1	58.1	25 V	174.1	88.1	25 V
NAG	188.1	102.1	20 V	188.1	128.1	20 V
NAA-D3 (IS)	177.1	58.1	25 V	177.1	90.9	25 V

 Table S1
 Optimized MRM parameters for NAA and NAG quantitation by using LC-QqQ MS

Table S2The precisions and recoveries for the measurements of NAA and NAG in blank

medium	by	LC-MS/MRM	method

	-								
Analyte	Intra-day precision RSD (%, n=5)			Inter-day precision RSD (%, n=5)			Recovery (%, n=3)		
	Low	Medium	High	Low	Medium	High	Low	Medium	High
NAA	(10 nM)	(100 nM)	(1000 nM)	(10 nM)	(100 nM)	(1000 nM)	(10 nM)	(100 nM)	(1000 nM)
	8.8	3.1	3.5	9.7	6.9	7.9	88.8	92.9	101.0
	(2 nM)	(20 nM)	(200 nM)	(2 nM)	(20 nM)	(200 nM)	(2 nM)	(20 nM)	(200 nM)
NAG	11.4	8.9	3.0	12.6	8.0	9.3	103.1	104.5	95.6

Fig. S3 Typical LC-MS total-ion chromatograms of day 18 and day 0 (control) samples acquired in both positive (A) and negative (B) ion modes.

Fig. S4 PCA plots of day 0 (red), day 18 (blue), and QC (green) samples under both positive (A) and negative (B) modes, with the first three principal components accounting for 91.2% (A) and 87.9% (B) of the variance in analysis. Each dot represents a sample and each color represents the type of the sample.

lonization mode	Samples	Total features	Total significantly changed features	Total increased features	Total decreased features
LC-ESI⁺	Day 10 vs Day 0	13803	2483	1829	654
	Day 18 vs Day 0	15732	3929	3344	585
	Day 28 vs Day 0	15850	4224	3639	585
LC-ESI-	Day 10 vs Day 0	858	342	317	25
	Day 18 vs Day 0	865	320	278	42
	Day 28 vs Day 0	852	333	280	53

Table S3 Metabolite profiling and comparison between the sample groups (day 10, day 18,day 28) and control group (day 0) (Fold change > 1.5, p < 0.05)