Supplementary Information

Sensitive Electrochemical Detection of Metabisulphite in Gastrointestinal Fluids

Sharmila Durairaj¹, Qian Guo², Qi Wang^{2,*}, Aicheng Chen^{1,*}

- 1. Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada
- 2. Agriculture and Agri-Food Canada, 90 Stone Road West, Guelph, ON N1G 5C9, Canada
- * Corresponding authors: qi.wang2@agr.gc.ca (Q. Wang); aicheng@uoguelph.ca (A. Chen).

Table S1. Formulations of the stimulated salivary fluid (SSF) and the simulated gastric fluid (SGF) at the specified pH values.

			SSF		SGF pH 3			
			pH 7					
Constituent Stock conc.		onc.	Vol. of stock	Conc. in SSF	Vol. of stock	Conc. in SGF		
	$g L^{-1}$	mol L ⁻¹	mL	mmol L ⁻¹	mL	mmol L ⁻¹		
KCl	37.3	0.5	15.1	15.1	6.9	6.9		
KH_2PO_4	68	0.5	3.7	3.7	0.9	0.9		
NaHCO ₃	84	1	6.8	13.6	12.5	25		
NaCl	117	2			11.8	47.2		
$MgCl_2(H_2O)_6$	30.5	0.15	0.5	0.15	0.4	0.1		
$(NH_4)_2CO_3$	48	0.5	0.06	0.06	0.5	0.5		
For pH adjustn	nent							
	$mol L^{-1}$		mL	mmol L^{-1}	mL	mmol L^{-1}		
NaOH	1		—	_	—			
HCl	6		0.09	1.1	1.3	15.6		
$CaCl_2(H_2O)_2$ is not added to the simulated digestion fluids, see details in legend or L^{-1} mol L^{-1} mod L^{-1} mod L^{-1}								
$CaCl_2(H_2O)_2$	5 1 44.1	0.3		1.5 (0.75*)		0.15 (0.075*)		
<i>^a</i> * in brackets	is the corr	esponding Ca	²⁺ concentration in	n the final digestic	on mixture.			

No	Method	Sensor	Linear range	Sensitivity	LOD	Reference
		Element/Analyte	(µM to mM)	(µA/µM cm ⁻²)	(μΜ)	
1	Electrochemical	Sulfite oxidase/sulphite	200 - 1.8	-	200	S1
2	Electrochemical	MWCNT/COOH /Sulphite	400 - 4.4	2.2	80	82
3	Electrochemical	NiPCNF/AI /Sulphite	40 - 4.2	-	3	S3
4	Electrochemical	NiO nanoplate /Sulphite	16.2 -0.6	2.8	8.8	S4
5	Electrochemical	Zn nanoparticles /Bisulphite	5 - 0.41	-	-	S5
6	HPIC	Bisulphite	3-165 µg/ml			S6
7	UV spectroscopy	Bisulphite	50- 375 µg.ml		1 μg/ml	S7
8	Bisulphite	Au/F-rGO	10 - 1.0	4.9	0.67	This work

Table S2. Comparison of the performance of different electrochemical sensors for the detection of sulphite and bisulphite.

High performance ion chromatography

- S1. D.J. Shawk, S.S. Dritz, R.D. Goodband, M.D. Tokach, J.C. Woodworth, J.M. Derouchey, F.A. Sem, H.L. Frobose, M.D. Tokach, E.L. Hansen, L.J. McKinney, J.M. Derouchey, R.D. Goodband, J.L. Nelssen, S.S. Dritz, T. City, D. Moll, D., F. Ahmadi, W.H. Lee, Y.K, Oh, K. Park, W.S. Kwak, *Arch. Anim. Nutr.*, 2019, **389**, 143–152.
- S2. M.H. Pournaghi-Azar, M. Hydarpour, H. Dastangoo, Anal. Chim. Acta 2003, 497, 133-141.
- S3. R. Rawal, S. Chawla, T. Dahiya, C.S. Pundir, Anal. Bioanal. Chem., 2011, 401, 2599–2608.
- S4. V. Sudha, S.M. Senthil Kumar, R. Thangamuthu, ., J. Alloys Compd. 2018, 749, 990-999.
- S5. V. Sudha, S.M. Senthil Kumar, R. Thangamuthu, J. Alloys Compd., 2018, 744, 621–628.

S6. K. Wang, E.P.C. Lai, K. Wang, K. Lai, P.C Edward, Chemosensors, 2022, 10, 145-163.

S7. L. Geiser, E. Varesio, J.L. Veuthey, J. Pharm. Biomed. Anal. 31 2003, 31, 1059-1064

Figure S1. Energy-dispersive X-ray spectrum of the Au/F-rGO nanocomposite.

Figure S2. High resolution C1s X-ray photoelectron spectrum of the F-rGO.

Figure S3. Cyclic voltammograms of the F-rGO/GCE (A) and the GCE (C) recorded in 0.1 M KCl containing 5.0 mM [Fe(CN)6] $^{3-/4-}$ at the scan rates varying from 10 to 100 mV s⁻¹. Plots of the redox peak currents vs. the squared root of the scan rate (mVs⁻¹) for the F-rGO/GCE (B) and the GCE (D).

Figure S4. (A) Cyclic voltammogram (CV) of the Au/rGO/GCE recorded in 0.1 M KCl containing 5.0 mM [Fe(CN)₆] ^{3-/4-} at the scan rate of 50 mVs⁻¹. (B) CVs of the Au/rGO electrode recorded in 0.1M PBS at pH 7.4 in the absence (black) and in the presence of 100 μ M SMBS at a scan rate of 50 mV s⁻¹.

Figure S5. Effect of the electrochemical Au deposition time on the CVs of the Au/F-rGO/GCE recorded in 0.1 M PBS (pH 7.4) in the absence of (black) and in the presence of 100 μ M SMBS at the scan rate of 50 mVs⁻¹. The electrochemical deposition of Au was carried out in a 2 mM AuCl₃ + 0.1M KNO₃ electrolyte at -0.4 V (vs Ag/AgCl) for (A) 60 s, (B) 150 s, (C) 300 s and (D) 400 s.

Figure S6. Effect of the pH of the electrolyte on the oxidation peak current at the Au/F-rGO/GCE obtained from the LSV recorded in 0.1 M PBS containing 100 μ M SMBS at the scan rate of 50 mVs⁻¹.