SUPPLEMENTARY MATERIAL – SPME-GCMS ANALYSIS

Analytical conditions

VOCs were extracted using Solid Phase Microextraction (SPME) with 1-cm fibre coated with $50/30-\mu m$ divinyl benzene/carboxen/poly-dimethylsiloxane (DVB/CAR/PDMS). Three replicates of 0.5 grams of each sample were placed in a 20-ml screw-capped clear vial. The sample was incubated at 70°C for 20 minutes. The extraction time with SPME was set at 70°C for 40 minutes. After sampling, the fibre was immediately injected into the GC-MS injection port at 250°C for 5 minutes. VOCs were determined by gas chromatography/mass spectrometry (GC-MS). Analysis was carried out using Agilent Technologies 7820A/5977B Series MSD with Supelco SPB-624 (20 m x 0.18 mm ID x 1.0 µm film thickness). The oven temperature was initially set at 40°C for 5 minutes, then increased to 100°C at a 4°C/min rate, increased to 220°C at a 6°C/min rate and maintained for 20 minutes. Helium was used as carrier gas at a flow rate 0.8 ml/min and the ion source temperature was set to 230°C. The mass analyser operated in scan mode in the range 25 – 300 m/z.

Data processing

SPME-GCMS data processing was carried out using MS-DIAL software, which provides a complete workflow for mass spectral deconvolution, peak alignment, integration and annotation^{1,2}. Peak annotation was performed against the NIST 14 mass spectral library. Matches with dot product/reverse dot product scores higher than 0.7 were retained.

Mass peak annotation

The samples analysed by SPME-GCMS analysis were a subset of those analysed by PTR-ToF-MS and included both softwood (n = 19) and hardwood (n = 16). Mass peak annotation was carried out according to the following procedure:

- (1) Sum formula was estimated using measured exact mass from PTR-ToF-MS.
- (2) Using SPME-GCMS data, a list of candidate compounds was compiled having a sum formula matching the reagent ion sum formula from step (1).
- (3) Linear correlation was evaluated between PTR-ToF-MS mass peak and corresponding peak areas of candidate compound obtained from step (2).
- (4) Whenever possible, matching references were sought in the literature on wood and TMW VOC analysis.

¹ H. Tsugawa, T. Cajka, T. Kind, Y. Ma, B. Higgins, K. Ikeda, M. Kanazawa, J. VanderGheynst, O. Fiehn, M. Arita, MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis, Nat Methods. 12 (2015) 523–526. <u>https://doi.org/10.1038/nmeth.3393</u>.

² Z. Lai, H. Tsugawa, G. Wohlgemuth, S. Mehta, M. Mueller, Y. Zheng, A. Ogiwara, J. Meissen, M. Showalter, K. Takeuchi, T. Kind, P. Beal, M. Arita, O. Fiehn, Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics, Nat Methods. 15 (2018) 53–56. https://doi.org/10.1038/nmeth.4512.

Measured	Theoretical	Sum formula	Tentative identification	Reference*	r [†]	<i>p</i> -value [‡]	chemical
mass (Th)	mass (Th)						class
31.018	31.018	CH₃O ⁺	Formaldehyde	А			carbonyls
34.037	34.037	¹³ CH ₅ O ⁺	Methanol	А			alcohols
41.038	41.039	C ₃ H ₅ +	Fragment				fragments
42.010	not available	not available	Unknown				unknown
44.057	44.058	¹³ CC ₂ H ₇ ⁺	Fragment				fragments
46.036	46.037	¹³ CCH ₅ O ⁺	Acetaldehyde	А			carbonyls
47.012	47.013	CH ₃ O ₂ ⁺	formic acid	А	0.848	<0.001	acids
53.002	not available	not available	Unknown				unknown
53.039	53.039	$C_4H_5^+$	Fragment				fragments
55.054	55.054	$C_4H_7^+$	Fragment				fragments
57.033	57.033	C₃H₅O⁺	Unknown				unknown
57.070	57.070	$C_4H_9^+$	Fragment				fragments
60.019	60.016	¹³ CCH ₃ O ₂ ⁺	Unknown				unknown
60.052	60.052	$^{13}CC_{2}H_{7}O^{+}$	acetone/propanal (¹³ C isotope)	А			carbonyls
62.032	62.032	¹³ CCH ₅ O ₂ ⁺	acetic acid (¹³ C isotope)	A,B,F,G	0.719	0.029	acids
65.037	65.039	C₅H₅⁺	fragment				fragments
65.058	not available	not available	Unknown				unknown
67.023	not available	not available	Unknown				unknown
69.033	69.033	$C_4H_5O^+$	Furan	Н	0.767	0.005	furans
69.069	69.070	C₅H ₉ ⁺	Fragment				unknown
71.048	71.049	$C_4H_7O^+$	Unknown				unknown
71.085	71.086	$C_{5}H_{11}^{+}$	Fragment				unknown
73.028	73.028	$C_3H_5O_2^+$	Unknown				unknown

Table S1. List of PTR-ToF-MS mass peaks. A tentative identification is provided when possible.

73.064	73.065	C₄H ₉ O⁺	Butanal	А			carbonyls
74.034	74.032	$^{13}CC_{2}H_{5}O_{2}^{+}$	Unknown				unknown
75.995	not available	not available	Unknown				unknown
76.047	76.047	$^{13}CC_{2}H_{7}O_{2}^{+}$	propanoic acid/methyl acetate (¹³ C isotope)	A,F			acids/esters
79.053	79.054	$C_6H_7^+$	Fragment				fragment
82.027	not available	not available	Unknown				unknown
83.045	83.049	C₅H ₇ O⁺	Unknown				unknown
83.085	83.086	$C_6H_{11}^+$	Fragment				fragments
85.028	not available	not available	Unknown				unknown
85.064	85.065	C₅H₀O⁺	Unknown				unknown
85.096	not available	not available	Unknown				unknown
87.043	87.044	$C_4H_7O_2^+$	Diacetyl	G			carbonyls
87.079	87.080	$C_5H_{11}O^+$	Pentanal	А	0.667	0.049	carbonyls
89.059	89.060	$C_4H_9O_2^+$	methyl-propionate	F,G	0.671	0.023	esters
95.020	not available	not available	unknown				unknown
95.044	95.049	C ₆ H ₇ O⁺	phenol	A,E,F			phenols
98.031	98.032	¹³ CC ₄ H ₅ O ₂ ⁺	furfural	A,B,C,D,E,F	0.985	<0.001	furans
99.080	99.080	$C_6H_{11}O^+$	hexenal	А			carbonyls
101.057	101.060	$C_5H_9O_2^+$	2,3-Pentanedione	E,F			carbonyls
101.095	101.096	C ₆ H ₁₃ O ⁺	hexanal	A,B,F	0.691	0.039	carbonyls
103.036	103.039	$C_4H_7O_3^+$	dihydro-hydroxyfuranone	E,F			furans
103.075	103.075	$C_5H_{11}O_2^+$	pentanoic acid/ethyl-propanoate	B,G			acids/esters
105.067	105.070	C ₈ H ₉ ⁺	unknown				unknown
107.047	107.049	C ₇ H ₇ O⁺	benzaldehyde	A,C,E,F	0.679	0.044	carbonyls
107.085	107.086	$C_8H_{11}^+$	ethylbenzene	F			aromatics
109.061	109.065	C ₇ H ₉ O⁺	methyl-phenol	С			phenols
109.101	109.101	$C_8H_{13}^+$	unknown				unknown

111.043	111.044	$C_6H_7O_2^+$	methyl-furfural	E,F	0.965	<0.001	furans
111.075	not available	not available	unknown				unknown
111.115	111.117	$C_8H_{15}^+$	unknown				unknown
113.059	113.060	$C_6H_9O_2^+$	2-hydroxy-3-methyl-2-cyclopenten-1-one	F,G			carbonyls
113.097	113.096	$C_7H_{13}O^+$	2-heptenal, (z)-	G			carbonyls
115.039	115.039	$C_5H_7O_3^+$	4-hydroxy-5,6-dihydro-(2H)-pyran-2-one	E,F			carbonyls
115.076	115.075	$C_6H_{11}O_2^+$	2,5-hexanedione				carbonyls
115.112	115.112	$C_7H_{15}O^+$	2-heptanone	A	0.610	0.046	carbonyls
117.055	117.055	$C_5H_9O_3^+$	acetol acetate	E,F			carbonyls
117.091	117.091	$C_6H_{13}O_2^+$	hexanoic acid	A,B,F			acids
119.082	119.086	$C_9H_{11}^+$	unknown				unknown
121.049	121.050	$C_4H_9O_4^+$	methyl acetoxyacetate				esters
121.102	121.101	$C_9H_{13}^+$	unknown				unknown
123.044	123.044	$C_7H_7O_2^+$	Benzaldehyde, 2-hydroxy-	С			carbonyls
123.081	123.080	C ₈ H ₁₁ O ⁺	Phenol, 2,3-dimethyl-	С	0.829	0.005	phenols
123.117	123.117	$C_9H_{15}^+$	unknown				unknown
125.060	125.060	$C_7H_9O_2^+$	1-Propanone, 1-(2-furanyl)-/2-Acetyl-5-methylfuran	C,E,F	0.815	0.002	furans
125.097	125.096	$C_8H_{13}O^+$	4,5-dimethyl-2-ciclohexen-1-one	E,F			carbonyls
125.133	125.132	$C_9H_{17}^+$	unknown				unknown
127.040	127.039	C ₆ H ₇ O ₃ +	3-Furancarboxylic acid, methyl ester/Methyl 2-furoate/5-Hydroxymethylfurfural	E,F,G	0.770	0.005	furans
127.075	127.075	$C_7H_{11}O_2^+$	2-Cyclopenten-1-one, 3-ethyl-2-hydroxy-	E,F	0.763	0.006	carbonyls
127.112	127.112	$C_8H_{15}O^+$	2-Octenal, (E)-	A,E,F,G	0.767	0.005	carbonyls
129.092	129.091	$C_7H_{13}O_2^+$	3,6-Heptanedione		0.615	0.043	carbonyls
129.128	129.127	$C_8H_{17}O^+$	Octanal	A			carbonyls
131.072	131.070	$C_6H_{11}O_3^+$	2-Butanone, 1-(acetyloxy)-	E,F	0.747	0.008	carbonyls
131.107	131.107	$C_7H_{15}O_2^+$	heptanoic acid	В			acids
135.053	not available	not available	unknown				unknown

135.117	135.117	$C_{10}H_{15}^{+}$	Bicyclo[3.1.0]hex-2-ene, 4-methylene-1-(1-methylethyl)- / p-Mentha-1,5,8-triene	A	0.895	0.001	terpenes
138.137	138.136	${}^{13}CC_9H_{17}^+$	alpha- and beta-pinene, camphene, D-limonene and delta-carene	A	0.684	0.042	terpenes
139.114	139.112	$C_9H_{15}O^+$	furan, 2-pentyl-	A,G	0.816	0.002	furans
141.127	141.127	$C_9H_{17}O^+$	2-Nonenal, (E)-	A,E,F,G	0.815	0.022	carbonyls
143.106	143.107	$C_8H_{15}O_2^+$	unknown				unknown
143.143	143.143	$C_9H_{19}O^+$	Nonanal	A,B			carbonyls
145.120	145.122	$C_8H_{17}O_2^+$	Octanoic acid	В			acids
147.116	not available	not available	unknown				unknown
149.096	149.096	$C_{10}H_{13}O^{+}$	Anethole/2-Butanone, 4-phenyl-	A	0.959	<0.001	carbonyls
151.113	151.112	C ₁₀ H ₁₅ O⁺	Bicyclo[3.1.1]hept-3-en-2-one, 4,6,6-trimethyl-, (1S)-/2-Cyclohexen-1-one, 3- methyl-6-(1-methylethylidene)-		0.872	0.002	terpenes
152 120	152 127		Camphenol, 6-/2-Cyclohexen-1-ol, 1-methyl-4-(1-methylethenyl)-, trans-	DC	0.045	-0.001	
153.128	153.127	$C_{10}H_{17}U^{+}$		B,G	0.945	<0.001	terpenes
155.106	155.107	$C_9H_{15}O_2^+$	3,5-dimethyl-2-hydroxy-2-ciclopenten-1-one	E,F			carbonyls
			dimethyl-3-(1-methylethenyl)- / Bicyclo[2 2 1]bentan-2-ol 2 3 3-trimethyl- / 3-				
155.143	155.143	$C_{10}H_{19}O^{+}$	Cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)-,(R)- / alpha terpineol	A,B,G	0.928	<0.001	terpenes
157.089	157.086	$C_8H_{13}O_3^+$	unknown				unknown
159.138	159.138	$C_9H_{19}O_2^+$	Nonanoic acid	В			acids
161.129	161.132	$C_{12}H_{17}^{+}$	unknown				unknown
163.148	163.148	$C_{12}H_{19}^{+}$	unknown				unknown
175.147	not available	not available	unknown				unknown
179.145	179.143	$C_{12}H_{19}O^{+}$	5,5,8-Trimethyl-3,6,7-nonatrien-2-one				carbonyls
191.180	not available	not available					unknown
205.196	205.195	$C_{15}H_{25}^{+}$	alpha-muurolene, beta-isocaryophyllene and longifolene	А	0.856	0.003	terpenes
217.196	not available	not available					unknown

[†] Pearson's correlation coefficient. When more than one candidate copound is available, correlation is computed using the sum of their peak areas.

^{*} References: (A) J. Pohleven, M. Burnard, A. Kutnar, VOLATILE ORGANIC COMPOUNDS EMITTED FROM UNTREATED AND THERMALLY MODIFIED WOOD - A REVIEW, WFS. 51 (2019) 231–254. https://doi.org/10.22382/wfs-2019-023; (B) R. Liu, C. Wang, A. Huang, B. Lv, Characterization of Odors of Wood by Gas Chromatography-Olfactometry with Removal of Extractives as Attempt to Control Indoor Air Quality, Molecules. 23 (2018) 203. https://doi.org/10.3390/molecules23010203; (C) M. De Rosso, D. Cancian, A. Panighel, A. Dalla Vedova, R. Flamini, Chemical compounds released from five different woods used to make barrels for aging wines and spirits: volatile compounds and polyphenols, Wood Sci Technol. 43 (2009) 375–385. https://doi.org/10.1007/s00226-008-0211-8; (D) M.C. Díaz-Maroto, E. Sánchez-Palomo, M.S. Pérez-Coello, Fast Screening Method for Volatile Compounds of Oak Wood Used for Aging Wines by Headspace SPME-GC-MS (SIM), J. Agric. Food Chem. 52 (2004) 6857–6861. https://doi.org/10.1021/jf049032m; (E) B. Fernández de Simón, E. Esteruelas, Á.M. Muñoz, E. Cadahía, M. Sanz, Volatile Compounds in Acacia, Chestnut, Cherry, Ash, and Oak Woods, with a View to Their Use in Cooperage, J. Agric. Food Chem. 57 (2009) 3217–3227. https://doi.org/10.1021/jf803463h; (F) N. Natali, F. Chinnici, C. Riponi, Characterization of Volatiles in Extracts from Oak Chips Obtained by Accelerated Solvent Extraction (ASE), J. Agric. Food Chem. 54 (2006) 8190–8198. https://doi.org/10.1021/jf614387; (G) L. Culleré, B. Fernández de Simón, E. Cadahía, V. Ferreira, P. Hernández-Orte, J. Cacho, Characterization by gas chromatography-olfactometry of the most odor-active compounds in extracts prepared from acacia, chestnut, cherry, ash and oak woods, LWT - Food Science and Technology. 53 (2013) 240–248. https://doi.org/10.1016/j.lwt.2013.02.010; (H) C.A.S. Hill, Wood Modification Chemical, Thermal and Other Processes, 2007. https://nbn-resolving.org/urn:nbn:de:101:1-2015021011160 (accessed June 22, 2022).