Supplementary Material

Ultrasensitive catechin electrochemical sensor based on uniform ordered mesoporous carbon hollow spheres (MCHSs) advanced carbon based conductive materials

Li Zhang ^{a,b}, Jiejun Li ^a, Chenxi Wang^a, Linzi Huang^a, Minghui Huang^a, Yuefan Wang^a, Xi Tang^a, Pengcheng Zhao^a, Yixi Xie^{a,d*}, Junjie Fei^{a,c*}

^a Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
^b College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, PR China
^c Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
^d Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China
^{*} Yixi Xie, College of Chemistry, Xiangtan University, Xiangtan, China *** Junjie Fei, Ph.D., College of Chemistry, Xiangtan University, Xiangtan, China *E*-mail: fei_junjie@xtu.edu.cn
Tel.: 86-731-58292060

2. List of Supplementary Tables and Figures:

Scheme S1. The reasonable electrochemical reaction mechanism of catechin at MCHSs/GCE.

Figure S1. SEM images of (A, B) SiO₂@SiO₂@RF and (C, D) SiO₂@SiO₂@C.

Figure S2. XRD patterns of MCHSs.

Figure S3. The XPS spectra (A) the survey spectrum, (B) C1s spectrum, (C) O1s spectrum.

Figure S4. N₂ adsorption-desorption isotherms (inset) and pore size distribution of MCHSs.

Figure S5. (A) The oxidation peak currents of 0.5 μ M catechin on the different concentration MCHSs/GCE in 0.1 M PBS solution. (B) The oxidation peak currents of 0.5 μ M catechin on the MCHSs/GCE in 0.1 M PBS solution over a pH range of 4.5 to 8.5. (C) Influence of accumulation time on the oxidation peak current of 0.25 μ M catechin. Accumulation potential: 0.2V. (D) Influence of accumulation potential on the oxidation peak current of 0.25 μ M catechin. Accumulation time: 1200 s.

Figure S6.The molecular electrostatic potential (MEP) map of catechin (the blue dot is the minimum and the yellow dot is the maximum, kcal/mol).

Table S1. Analytical results for the catechin detection from real samples (n = 3).

Scheme S1

Figure S1

Figure S2

Figure S3

Figure S6

Table S1

Added (nM)	Founded (nM)	Recovery	RSD (%)
		(%)	
0	39.27	-	-
20	60.21	104.7	0.82
40	78.69	98.6	1.02
60	96.13	94.8	0.64