Supporting information

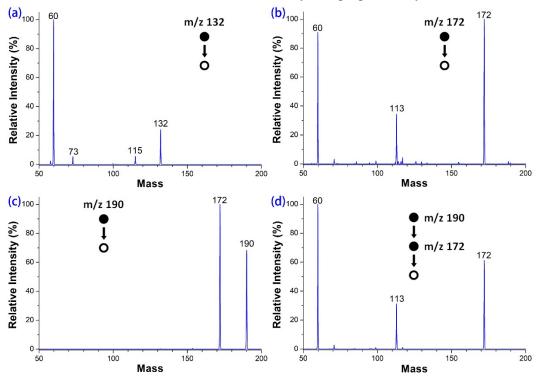
Implementing reactive secondary electrospray ionization based on gas-droplet reactions for VOCs analysis

Quan Yu^{a,*}, Jing Gao^a, Xiaohua Yu^b, Jianbo Shi^b, Lin Lin^{c,*}, Xiaohao Wang^a

^a Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

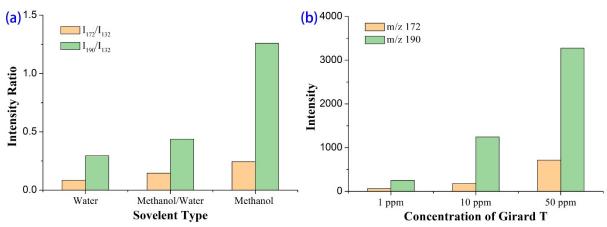
^b Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

^c Materials Characterization & Preparation Center, Southern University of Science and Technology, Shenzhen 518055, China.


Content

1. MS ⁿ spectra of the reaction-related ions in reactive SESI-MS analysis of propionaldehyde	
2. Influence of some experimental parameters on the reaction efficiency	3
3. Reactive SESI-MS analysis of formaldehyde with different derivatization reagents	4
4. Reactive SESI-MS analysis of butanone and butyraldehyde by Girard T solution	i
5. Silver-containing complex ions in exhaled breath of cultured non-diabetic and diabetic mice	6

^{*} Corresponding author.


E-mail address: yu.quan@sz.tsinghua.edu.cn (Q. Yu) E-mail address: linl@sustech.edu.cn (L. Lin)

MSⁿ spectra of the reaction-related ions in reactive SESI-MS analysis of propionaldehyde

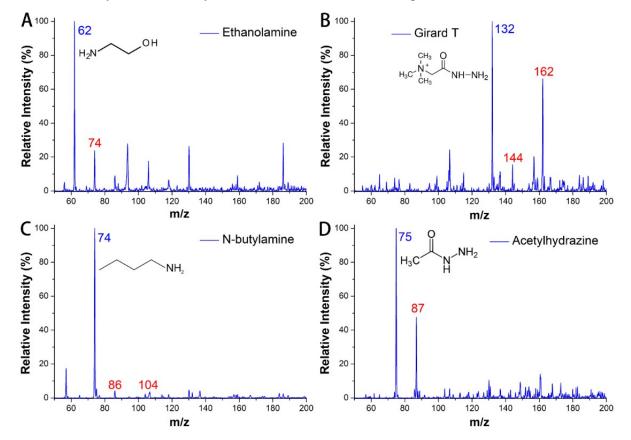


Fig. S1. MS^2 spectra of (a) Girard T ion (m/z 132), (b) product ion (m/z 172), and (c) intermediate ion (m/z 190). (d) MS^3 spectrum of the fragmentation ion (m/z 172) from CID of the intermediate ion (m/z 190), which has the same ion composition with the reaction product ion (m/z 172). As a characteristic functional group of Girard T, protonated trimethylamine ion (m/z 60) is observed in the three compounds, indicating that both the intermediate and product ions are derived from Girard T.

Influence of some experimental parameters on the reaction efficiency

Fig. S2. (a) The intensity ratio of the reactant (Girard T, m/z 132) ion and the reaction product ions (m/z 172, m/z 190) obtained using different types of solvent (water, methanol/water (1:1) mixture, and methanol). (b) Intensities of the reaction intermediate ion (m/z 190) and product ion (m/z 172) acquired using different concentrations (1 ppm, 10 ppm and 50 ppm) of Girard T solutions.

Reactive SESI-MS analysis of formaldehyde with different derivatization reagents

Fig. S3. Reactive SESI-MS spectra of formaldehyde using (A) ethanolamine, (B) Girard T, (C) N-butylamine, and (D) acetylhydrazide as the derivatization reagents. Online derivatization of formaldehyde (marked as F, molecular mass 29) can be induced using a variety of reagents (marked as R), such as ethanolamine (m/z 62), Girard T (m/z 132), n-butylamine (m/z 74), and acetylhydrazide (m/z 75). The reactions between formaldehyde and these additives generally take place through the Schiff base formation mechanism, namely, an initial addition reaction and then a dehydration process. The product ions of Schiff base formation [R+F-H₂O+H]⁺ or the intermediate ions [R+F+H]⁺ can be found in all spectra. Since the generation of those derivative ions is related to formaldehyde in the samples, they can be used as markers to indicate the content of formaldehyde.

Reactive SESI-MS analysis of butanone and butyraldehyde by Girard T solution

Fig. S4. Reactive SESI mass spectra of (a) butanone, and (b) butyraldehyde, in which Girard T was used as the derivatization reagent. Ketones have one more alkyl group nearing the carbonyl structure that pushes electrons to the neighboring electrophilic center, leading to less electrophilic and reactive nucleophilic addition. Moreover, since the reaction starts with nucleophile attacking the carbon in the carbonyl group, more hydrogen atoms in ketones will produce more steric hindrance for nucleophile approaching. In the SESI process, the addition reaction of Girard T and butanone rarely occurred, so no obvious product ions were observed. In contrast, a certain amount of addition products, including the hydrazine ion (m/z 204) and its dehydration ion (m/z 186), were produced from the online derivatization of butyraldehyde. Girard T carries a formal charge on the nitrogen atom, thus transforming aldehydes into products with charged (quaternary ammonium) and easily ionizable (secondary amine for positive-ion mode) groups which improve mass spectrometric response.

Silver-containing complex ions in exhaled breath of cultured non-diabetic and diabetic mice

Table S1 The Ag-containing complex ions detected in the exhaled breath from the cultured nondiabetic and diabetic mice using reactive SESI-MS. The most proposed molecular formula, signal intensity, and mass error were also given. The types of these ions are roughly determined from their signal changes in EIC. Specifically, ions detected in the mouse with diabetes have significantly higher intensities than that in the normal mouse are classified as potential biomarkers for diabetes. Ions have fewer differences in signal intensities between the two samples are classified as suspect biomarkers. Additionally, the remaining ion pairs can be divided into two other categories: air or solvent background. Thereinto, the ion intensity of the former does not change with sample injection, while the intensity change of the latter corresponds to the injection process, but is independent of the mouse type.

	5 1	1	7 1			
Туре	Measured m/z value	Mass error (ppm)	Molecular formula	Intensity (nondiabetic)	Intensity (diabetic)	
	106.9050	4.26		248587	272442	
Silver ion	108.9050	7.28	Ag	232747	251268	
	164.9464	-0.06		171	2595	
Potential	166.9456	-2.83	C ₃ H ₆ OAg	147	2349	
biomarkers	347.0168	-0.26	~	1	1231	
	349.0161	-1.30	$C_{12}H_{12}N_6Ag$	1	1344	
	222.9882	-0.33		1421	1979	
	224.9877	-1.05	$C_6H_{12}O_2Ag$	1036	2049	
Suspected	281.0297	-1.6		9074	17097	
biomarkers	283.0293	-1.77	$C_9H_{18}O_3Ag$	7908	14607	
	306.0015	-0.26		1111	1318	
	308.0006	-2.08	$C_{10}H_{15}O_4Ag$	998	1075	
	288.9747	3.51		26907	34974	
	290.9742	2.92	$C_8H_{10}O_3N_2Ag$	25720	31012	
	289.9783	-1.83		1582	957	
Sample background	291.9777	-2.70	C ₄ H ₇ ON ₈ Ag	807	1182	
	306.9853	-0.94		73032	121939	
	308.9850	-0.82	$C_9H_8N_6Ag$	67328	110815	
	307.9887	2.10		4246	7513	
	309.9883	1.88	$C_3H_{13}O_6N_4Ag$	3889	6575	
	330.0013	-0.84		144918	209241	
	332.0009	-1.03	$C_{12}H_{15}O_4Ag$	133592	189842	
	331.0048	-1.74	C ₆ H ₁₀ ON ₉ Ag	11503	189842	
	333.0044	-1.93	$C_6\Pi_{10}O\Pi_9Ag$	10980	15321	
	123.9312	0.86	H ₃ NAg	2206	1212	
	125.9309	1.14	II3NAg	2310	1265	
	124.9152	0.73	H ₂ OAg	3906	4794	
	126.9149	0.73	H ₂ OAg	4133	3891	
Air or solvent	147.9309	-1.31	C ₂ H ₃ NAg	465888	564490	
background	149.9307	-0.38	C21131NAg	449845	536517	
	165.9415	-0.95	C ₂ H ₅ ONAg	27772	37494	
	167.9413	-0.13	C2115011Ag	25721	35892	
	188.9575	-0.76	C ₄ H ₆ N ₂ Ag	152811	177229	
	190.9572	-0.55	C4116IN2Ag	139122	169552	

189.9	9610 -9	9.411	CH ₉ O ₃ NAg	5558	6576
191.9	9606 -9	9.641		5284	5759
212.9	9675 -	0.18	CUOAr	833	1128
214.9	- 9669	1.40	$C_4H_{10}O_3Ag$	800	1092
223.9		0.99	CH ONA.	4372	2185
225.9	9829 ($C_5H_{11}O_2$	C ₅ H ₁₁ O ₂ NAg	3555	2021
269.0	269.0298 -1.26		10523	11214	
271.0)294 -	1.48	$C_8H_{18}O_3Ag$	9976	10208
301.0	- 0712 -	1.36	C II OA	6636	5502
303.0	- 0708	1.56	$C_{13}H_{22}OAg$	6665	5277
311.0		1.62	CILOA	9195	9738
313.0	- 398	1.81	$C_{10}H_{20}O_4Ag$	8101	7419
333.0	.)972 -	1.88	CILOA	1925	1876
335.0)969 -	1.75	$C_{14}H_{26}O_2Ag$	1740	1704
355.		1.86	C II OA	6403	5479
357.	1177	1.47	$C_{17}H_{28}OAg$	6071	5513
361.	- 1285	1.73	CILOA	9136	9676
363.	- 1281	1.89	$C_{16}H_{30}O_2Ag$	8189	8815
389.	1595	1.07		1768	1579
391.	1593	1.42	C ₁₆ H ₃₂ ON ₃ Ag	1361	1607