Fluorescent probes based on acridine derivatives and their application

in dynamic monitoring of cell polarity variation

Hai-Yan Peng,^a Gang Zhang,^b Ru Sun,^{*,a} Yu-Jie Xu,^b Jian-Feng Ge^{*,a}

^a College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.

^b State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.

Index

Table S1. Optical properties of probe 1a in different solvents4
Table S2. Optical properties of probe 1b in different solvents
Table. S3 . Optical properties of probes 1c-d in H ₂ O and glycerol4
Fig. S1. Photofading behaviors of probes 1a-d in acetonitrile5
Fig. S2. Optical properties of probe 1b (10 μ M) in different solvents. (a) Absorption spectra; (b)
emission spectra (excited at 362 nm, slit widths: 5 nm/10 nm)5
Fig. S3. Emission spectra of probes 1c-d in different solvents. (a) emission spectra of 1c; (b)
emission spectra of 1d5
Fig. S4. Optical responses of probe 1b (10 μM) in dioxane/H_2O mixtures with increasing polarity
(water from 10% to 100%). (a)Absorption spectra; (b)emission spectra (λ_{ex} =362 nm, slit widths: 5
nm/10 nm); (c) relationship between fluorescence intensity (570 nm) and Δf ; (d) linear relationship
of fluorescence intensity at 570 nm versus Δf (0.238–0.315)6
Fig. S5. Optical responses of probe 1d (10 μ M) in glycerol/H ₂ O mixtures with increasing viscosity

^{*} Corresponding authors. E-mail addresses: sunru924@hotmail.com (R. Sun), ge jianfeng@hotmail.com (J.-F. Ge).

(water from 100% to 1%). (a)Absorption spectra; (b)emission spectra ($\lambda_{ex}\text{=}282$ nm, slit widths: 5
nm/10 nm); (c)relationship between $lg(I_{311nm})$ and $lg\eta$; (d)linear relationship of $lg(I_{311nm})$ versus $lg\eta$
6
Fig. SC. The fluence and the of muches (10, 110) in (1, 0/al second with the under different
Fig. S6. The fluorescence spectra of probe 1a (10 μ M) in H ₂ O/giverol mixture under different
viscosity7
Fig. S7. The fluorescence spectra of probe 1b (10 μM) in $H_2O/glycerol$ mixture under different
viscosity7
Fig. 50. Collectivity concertments of probes 1b $d(10, 0.04)$ to word different evolution. First M for Co^{2+}
Fig. S8. Selectivity experiments of probes 10-α (10 μm) toward different analytes. S min for Ca ⁻¹ ,
Mg^{2+} , Cu^{2+} , Cl^- , OCl^- , H_2O_2 ; 10 mM for K ⁺ , Na ⁺ , Cys, Gly, His. (a)probe 1b (λ_{ex} =362 nm, slit widths: 5
nm/10 nm). (b)probe 1c (λ_{ex} =360 nm, slit widths: 5 nm/10 nm). (c)probe 1d (λ_{ex} =282 nm, slit
widths: 5 nm/10 nm)7
Fig. S9. HeLa cells viabilities after treatment with probes 1a-c. Cell viability was assayed by the
CCK-8 method
Fig. S10. Fluorescence intensity of probe 1b at different pH
Fig. S11. Fluorescence confocal images of living HeLa cells with probe 1c and ROI analysis: (a, f, k)
confocal image (green channel) of cells with probe $\mathbf{1c}$ (6 μ M); (b, g, l) confocal image (red channel)
of cells with Lyso-Tracker Red DND-99 (100 nM), Gi-Tracker Red (100 nM) or Mito-Tracker®Red
CMXRos (100 nM); (c, h, m) merged image of the green and red channels; (d, i, n) fluorescence
intensity correlation plot of the green and red channels; (e, j, o) fluorescence intensities of the
regions of interest (ROIs) across the cells
Fig. S12. Photobleaching experiment of probe 1c. (a-f) The cell image of probe 1c after laser
irradiation for different times in HeLa cells. (g) average fluorescence intensity of green channel
after irradiation for different times9
Fig. S13. ¹ H NMR spectrum of probe 1a
Fig. S14. ¹³ C NMR spectrum of probe 1a
Fig. S15. HRMS(ESI ⁺) spectrum of probe 1a11
Fig. S16 . ¹ H NMR spectrum of probe 1b 11
.

Fig. S17. ¹³ C NMR spectrum of probe 1b	12
Fig. S18. HRMS(ESI ⁺) spectrum of probe 1b	12
Fig. S19. ¹ H NMR spectrum of probe 1c	13
Fig. S20. HRMS(ESI ⁺) spectrum of probe 1c	13
Fig. S21. ¹ H NMR spectrum of probe 1d	14
Fig. S22. HRMS(ESI ⁺) spectrum of probe 1d	14

Probe	Solvents	Δf	$\lambda_{Abs,max}{}^a$	$\lambda_{Em,max}{}^a$	Stokes	ϵ^{b}	Φ^{c}
					shift ^a		
1a	H_2O	0.3200	355	594	239	2.47	0.50
1a	DMSO	0.2640	351	583	232	3.34	3.06
1a	MeCN	0.3040	345	580	235	3.26	3.43
1a	MeOH	0.3092	345	574	229	3.88	3.83
1a	EtOH	0.2887	345	570	225	4.46	5.24
1a	DCM	0.2170	346	560	214	3.85	5.57
1a	THF	0.2086	347	562	215	3.57	5.82
1a	EA	0.1990	346	560	214	3.39	8.00
1a	Dioxane	0.0205	348	565	217	3.60	11.1
1a	TOL	0.0153	348	553	205	3.68	35.6

Table S1. Optical properties of probe 1a in different solvents.

Table. S2. Optical properties of probe 1b in different solvents.

Probe	Solvents	Δf	$\lambda_{Abs,max}{}^a$	$\lambda_{Em,max}{}^a$	Stokes	ε ^b	Φ^{c}
					shift ^a		
1b	H_2O	0.3200	364	572 ^d	208	1.00	0.51
1b	DMSO	0.2640	366	568 ^d	202	1.02	0.63
1b	MeCN	0.3040	366	557	191	0.98	1.42
1b	MeOH	0.3092	366	555	189	0.96	1.32
1b	EtOH	0.2887	366	556	190	0.87	1.47
1b	DCM	0.2170	367	548	181	1.04	2.18
1b	THF	0.2086	366	541	175	1.12	3.58
1b	EA	0.1990	364	535	171	1.06	9.93
1b	Dioxane	0.0205	364	535	171	1.24	13.5
1b	TOL	0.0153	366	534	168	0.97	13.2

Table. S3. Optical properties of probes 1c-d in H₂O and glycerol.

Probe	Solvents	$\lambda_{Abs,max}{}^a$	$\lambda_{Em,max}{}^a$	Stokes shift ^a	ϵ^{b}	Φ^{c}
1c	H_2O	366	442	76	1.65	0.30
1c	Glycerol	362	445	83	0.93	12.48
1d	H_2O	362	538	176	0.70	0.12
1d	Glycerol	365	532	167	0.98	9.20

^a Reported in nm.

^b Reported in $10^4 \text{ M}^{-1} \text{ cm}^{-1}$.

 $^{\circ}$ Reported in %. Coumarin–153 (Φ =0.544 in ethanol) was used as the reference compound in test.

^d Second highest peak.

Fig. S1. Photofading behaviors of probes 1a-d in acetonitrile.

Fig. S2. Optical properties of probe **1b** (10 μ M) in different solvents. (a) Absorption spectra; (b) emission spectra (excited at 362 nm, slit widths: 5 nm/10 nm).

Fig. S3. Emission spectra of probes **1c-d** in different solvents. (a) emission spectra of **1c**; (b) emission spectra of **1d**.

Fig. S4. Optical responses of probe **1b** (10 μ M) in dioxane/H₂O mixtures with increasing polarity (water from 10% to 100%). (a)Absorption spectra; (b)emission spectra (λ_{ex} =362 nm, slit widths: 5 nm/10 nm); (c) relationship between fluorescence intensity (570 nm) and Δf ; (d) linear relationship of fluorescence intensity at 570 nm versus Δf (0.238–0.315).

Fig. S5. Optical responses of probe **1d** (10 μ M) in glycerol/H₂O mixtures with increasing viscosity (water from 100% to 1%). (a)Absorption spectra; (b)emission spectra (λ_{ex} =282 nm, slit widths: 5 nm/10 nm); (c)relationship between lg(I_{311nm}) and lgn; (d)linear relationship of lg(I_{311nm}) versus lgn.

Fig. S6. The fluorescence spectra of probe 1a (10 μ M) in H₂O/glycerol mixture under different viscosity.

Fig. S7. The fluorescence spectra of probe 1b (10 $\mu M)$ in $H_2O/glycerol$ mixture under different

Fig. S8. Selectivity experiments of probes **1b-d** (10 μ M) toward different analytes. 5 mM for Ca²⁺, Mg²⁺, Cu²⁺, Cl⁻, OCl⁻, H₂O₂; 10 mM for K⁺, Na⁺, Cys, Gly, His. (a)probe **1b** (λ_{ex} =362 nm, slit widths: 5 nm/10 nm). (b)probe **1c** (λ_{ex} =360 nm, slit widths: 5 nm/10 nm). (c)probe **1d** (λ_{ex} =282 nm, slit widths: 5 nm/10 nm).

Fig. S9. HeLa cells viabilities after treatment with probes **1a-c**. Cell viability was assayed by the CCK-8 method.

Fig. S10. Fluorescence intensity of probe 1b at different pH.

Fig. S11. Fluorescence confocal images of living HeLa cells with probe **1c** and ROI analysis: (a, f, k) confocal image (green channel) of cells with probe **1c** (6 μ M); (b, g, l) confocal image (red channel) of cells with Lyso-Tracker Red DND-99 (100 nM), Gi-Tracker Red (100 nM) or Mito-Tracker®Red CMXRos (100 nM); (c, h, m) merged image of the green and red channels; (d, i, n) fluorescence intensity correlation plot of the green and red channels; (e, j, o) fluorescence intensities of the regions of interest (ROIs) across the cells.

Fig. S12. Photobleaching experiment of probe **1c**. (a-f) The cell image of probe **1c** after laser irradiation for different times in HeLa cells. (g) average fluorescence intensity of green channel after irradiation for different times.

11

Fig. S17 $^{\rm 13}{\rm C}$ NMR spectrum of probe ${\rm 1b}$

Fig. S18 HRMS(ESI⁺) spectrum of probe 1b

Fig. S21 ¹H NMR spectrum of probe 1d

Fig. S22. HRMS(ESI⁺) spectrum of probe 1d