1	Supporting Information
2	In-depth evaluation of automated non-contact reflectance-based hematocrit prediction of
3	dried blood spots
4	Laura Boffel ^{1#} , Liesl Heughebaert ^{1#} , Stijn Lambrecht ² , Marc Luginbühl ³ and Christophe P. Stove ^{1*}
5 6	¹ Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, B-9000 Ghent
7	² Laboratory of Clinical Chemistry and Hematology, Ghent University Hospital, B-9000 Ghent
8	³ CAMAG, Sonnenmattstrasse 11, CH-4132 Muttenz
9	#Equally contributed as co-first authors
10	*Corresponding author: Ottergemsesteenweg 460, B-9000 Ghent
11	christophe.stove@ugent.be
12	
13	Supplementary Information Content
14	1. Experimental section2
15	1.1 Selection of measurement conditions2
16	2. Results and discussion4
17	2.1 Selection of measurement conditions4
18	3. References
19	4. Supplementary Tables7
20	5. Supplementary Figures
21	
22	

23 1. Experimental section

24 1.1 Selection of measurement conditions

The CAMAG[®] DBS-MS 500 HCT allows to adjust different instrumental parameters to determine the hematocrit (Hct) of a dried blood spot (DBS). Therefore, prior to the set-up of the calibration model, two instrumental parameters were optimized: (i) probe-to-card distance and (ii) integration time of one measurement. The number of 'sub-scans' per individual measurement was fixed and set at 16, as recommended by Luginbühl *et al.*.¹

30 Optimization was performed using 24 venous left-over patient samples (Hct range 0.177 to 0.562 L/L). In a first step, the probe-to-card distance was varied from 3 to 12 mm, increasing with 1 mm per 31 32 measurement and using a fixed integration time of 4500 µs. Also a probe-to-card distance of 6.4 mm with a fixed integration time of 4500 µs was evaluated, as these were the initial instrumental settings 33 entered in the Chronos for CAMAG software. When oversaturation of the detector at a certain probe-34 to-card distance was observed (i.e. a background (BG) reflectance > 840), the integration time was 35 36 reduced until the BG reflectance was below 840. Next, the optimal combination of probe-to-card 37 distance and integration time was chosen based on the back-calculated Hct of the samples, using an initial linear calibration model. Based on the performance of the manual Hct prediction procedures²⁻⁴, 38 the acceptance limit was set at ±0.050 L/L difference from the reference value (determined using a 39 40 hematology analyzer).

In addition to the aforementioned measurement conditions, the use of multiple measurements 41 42 (further referred to as 'scans', with one 'scan' being the average of 16 'sub-scans') per DBS to determine the Hct was evaluated. First, as the reflectance of the DBS can be measured at different 43 44 positions within the spot, the maximum x- and y-position of the probe to the center of the DBS where 45 no BG reflectance is measured, was determined based on the mean diameter of a 25 μ L DBS (n = 24; Hct range 0.177 to 0.562 L/L). In a next step, to evaluate the ideal number of 'scans' per DBS (n), a 46 47 sample with a low (0.177 L/L), median (0.406 L/L) and high (0.562 L/L) Hct were 'scanned' at 21 48 different positions (Fig. S-11). For each sample, n was calculated using equation 1, in order to achieve a relative uncertainty of the mean normalized reflectance (i.e. BG_{reflectance}/Hct_{reflectance}) of maximum 5%. 49

$$\frac{CI_{(\alpha,n-1)}}{mean} \le 0.05 \text{ with } CI_{(\alpha,n-1)} = t_{(\alpha,n-1)} \cdot \frac{SD}{\sqrt{n}} \pm mean (1)$$

50

51 The mean and standard deviation (SD) were calculated based on the data obtained from 21 'scans' and 52 a two-tailed t-distribution and α = 0.05 were considered. The final number of 'scans' per DBS used in 53 all further experiments was based on the mean of the result obtained for the three samples.

- 54 Finally, multiple scans at the center vs. determination of the Hct at different positions within the spot
- 55 ('grid') were compared based on the data obtained during the set-up and validation of the calibration
- 56 model.

57 2. Results and discussion

58 2.1 Selection of measurement conditions

When the probe-to-card distance was varied from 3 to 12 mm at a fixed integration time of 4500 μ s, 59 oversaturation of the detector was observed for a probe-to-card distance of 3, 4 and 5 mm. Therefore, 60 the integration time was decreased to 1500, 2000 and 3000 µs, respectively (Table S-6). Furthermore, 61 62 a probe-to-card distance of 6.4 mm in combination with an integration time of 4500 µs yielded the highest number of samples (92%) for which the back-calculated Hct values were within 0.050 L/L of 63 the reference value (Table S-7). Hence, 6.4 mm and 4500 µs were selected as the optimal measurement 64 65 conditions, which were in fact the initial instrumental parameters entered in the Chronos for CAMAG 66 software. Since a non-weighted, linear regression equation to calculate the Hct was described in the CAMAG DBS-MS 500 HCT manual, Hct values were back-calculated based on an initial, non-validated 67 linear calibration model.⁵ In addition, a linear calibration model was used by Luginbühl *et al.* to predict 68 69 the Hct of DBS in the context of a pharmacokinetic study of diclofenac.¹ Also here, the probe-to-card 70 distance was evaluated, by varying the distance from 0.5 to 2.5 mm.¹ The authors concluded that the 71 optimal probe-to-card distance was actually a range from 1.4 to 2.0 mm and continued with a distance 72 of 1.8 mm for further experiments. However, we could not reproduce the recommended standard 73 probe-to-card distance of 1.8 mm since the initial measurements were done using a vertical-positioned 74 probe (prototype, Fig. S-12). Our system on the other hand, has a tilted probe with a minimal probeto-card distance of 3 mm. More recently, Luginbühl et al. described the application of the automated 75 76 Hct prediction method to correct for a Hct-dependent bias for the analysis of phosphatidylethanol, 77 where a probe-to-card distance of 1.4 mm was applied to determine the Hct of the samples. Although this distance is within the previously validated range, it is inconsistent with the probe-to-card distance 78 of 1.8 mm previously applied by these authors.^{1, 6} Therefore, re-evaluation of the optimal probe-to-79 80 card distance was needed. Furthermore, since only a probe-to-card distance in a very low range (from 81 0.5 to 2.5 mm) was evaluated in these articles, back-calculated Hct values were only evaluated using a probe-to-card distance up till 7 mm. Additionally, when using a probe-to-card distance of 8 mm and 82 higher, the beam of the excitation light appeared to be less focused on the DBS, with a less dense 83 coverage of the DBS at the outer edge of the light beam, compared to when using a probe distance of 84 7 mm and lower (Fig. S-13). 85

The 'ideal' number of 'scans' per DBS for a sample with a low (0.177 L/L), median (0.406 L/L) and high (0.562 L/L) Hct were 5.9, 4.8 and 4.5, respectively, with a mean of 5 'scans' per DBS. Therefore, in all further experiments all samples were measured in fivefold either at the center of the DBS or using a grid. In addition, the mean diameter of a 25 μ L DBS was approximately 8 mm, while the diameter of

- $90\,$ the area of the light beam covering the DBS was approximately 4 mm. Consequently, to avoid
- 91 measurement of the BG when analyzing smaller DBS, the maximum x- and y-position of the probe from
- 92 the center of the spot used in the grid was set at 1.5 mm (Fig. S-4).

93 3. References

- 94 1. M. Luginbühl, Y. Fischer and S. Gaugler, *Journal of analytical toxicology*, 2020, **46**, 187-193.
- 95 2. S. Capiau, L. S. Wilk, M. C. Aalders and C. P. Stove, *Analytical chemistry*, 2016, **88**, 6538-6546.
- 96 3. S. Capiau, L. S. Wilk, P. M. M. De Kesel, M. C. G. Aalders and C. P. Stove, *Analytical chemistry*,
 97 2018, **90**, 1795-1804.

4. L. Delahaye, L. Heughebaert, C. Luhr, S. Lambrecht and C. P. Stove, *Clinica chimica acta; international journal of clinical chemistry*, 2021, **523**, 239-246.

- 1005.CAMAG, DBS-MS500HCT., <a href="https://dbs.camag.com/product/camag-dbs-ms-500-https://dbs-camag.com/product/camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag.com/product/camag-dbs-ms-500-https://dbs-camag.com/product/camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-ms-500-https://dbs-camag-dbs-s00-https://dbs-camag-
- M. Luginbühl, F. Stoth, W. Weinmann and S. Gaugler, *Alcohol (Fayetteville, N.Y.)*, 2021, **94**, 17 23.

105 4. Supplementary Tables

106 Table S-1. Number of calibrators and QC samples (n) allocated to the different Hct cohorts: < 0.20,

107	0.20-0.25, 0.25-0.30	, 0.30-0.35,	0.35-0.40, 0.40-0.45,	, 0.45-0.50 and > 0.50.
-----	----------------------	--------------	-----------------------	-------------------------

Hct cohort	< 0.20	0.20-0.25	0.25-0.30	0.30-0.35	0.35-0.40	0.40-0.45	0.45-0.50	> 0.50	Total
Number of calibrators (n)	11	14	11	12	12	13	11	11	95
Number of QCs (n)	6	5	5	5	5	5	5	6	42

108

109 Table S-2. Number of samples (%) for which the predicted Hct values were within ±0.050 L/L of the

110 reference value (Sysmex) when applying a fivefold scan at the center of the spot or a 5-position grid

111 (fivefold scan at different positions within the spot). For the QCs, the results obtained at Day 0 were

	Back-calculated calibrators (n = 95; RT) (%)	Back-calculated calibrators (n = 95; 60 °C) (%)	QC set 1 replicate 1 (n = 42) (%)	QC set 1 replicate 2 (n = 42) (%)	QC set 2 replicate 1 (n = 42) (%)	QC set 2 replicate 2 (n = 42) (%)
5 x center	82	82	88	90	79	79
5-position grid	88	87	90	90	93	88

112 used.

- 114 Table S-3. Accuracy (bias, % and L/L) and precision (CV, %) based on the analysis of a second set of QC
- 115 samples (n = 42, n = 5 per level, except for Hct levels < 0.20 and > 0.50 L/L, where n = 6 per level).
- 116 Samples were measured twice per day on 4 different days.

Het range	Intra-day precision	Total precision	В	ias
nctrange	CV (%)	CV (%)	%	L/L
< 0.20	0.8%	1.5%	6.8%	0.012
0.20-0.25	1.4%	1.5%	2.0%	0.005
0.25-0.30	1.3%	1.3%	1.4%	0.003
0.30-0.35	1.7%	1.7%	-1.6%	-0.004
0.35-0.40	3.6%	3.6%	2.4%	0.009
0.40-0.45	2.1%	2.1%	4.1%	0.017
0.45-0.50	1.2%	1.3%	1.8%	0.009
> 0.50	1.7%	2.6%	-7.0%	-0.036
Total (42)	1.9%	1.9%	1.2%	0.002

- 118 Table S-4. Accuracy (bias, % and L/L) and precision (CV, %) based on the analysis of a first set of QC
- samples using the aged calibration curve (n = 42, n = 5 per level, except for Hct-levels < 0.20 and > 0.50
- 120 L/L, where n = 6 per level). Samples were measured twice per day on 4 different days.

Het rongo	Intra-day precision	Total precision	B	ias
nctrange	CV (%)	CV (%)	%	L/L
< 0.20	1.2%	1.8%	2.9%	0.005
0.20-0.25	1.7%	2.0%	1.4%	0.003
0.25-0.30	1.6%	2.0%	-5.2%	-0.015
0.30-0.35	1.5%	2.0%	-5.0%	-0.015
0.35-0.40	1.5%	1.7%	-5.6%	-0.019
0.40-0.45	1.4%	1.9%	-4.6%	-0.020
0.45-0.50	1.1%	1.9%	0.4%	0.002
> 0.50	2.2%	2.6%	-5.4%	-0.028
Total (42)	1.6%	2.0%	-2.6%	-0.011

122 Table S-5. Accuracy (bias, % and L/L) and precision (CV, %) based on the analysis of a second set of QC

123 samples using the aged calibration curve (n = 42, n = 5 per level, except for Hct-levels < 0.20 and > 0.50

124 L/L, where n = 6 per level). Samples were measured twice per day and on 4 different days.

Het range	Intra-day precision	Total precision	Bi	as
nctrange	CV (%)	CV (%)	%	L/L
< 0.20	0.9%	1.6%	-1.0%	-0.002
0.20-0.25	1.5%	1.6%	-4.4%	-0.010
0.25-0.30	1.3%	1.3%	-4.2%	-0.012
0.30-0.35	2.0%	2.0%	-6.5%	-0.020
0.35-0.40	1.6%	1.8%	-2.9%	-0.011
0.40-0.45	2.1%	2.1%	-0.7%	-0.003
0.45-0.50	1.2%	1.2%	-3.0%	-0.014
> 0.50	1.6%	2.5%	-11.3%	-0.058
Total (42)	1.6%	1.8%	-4.4%	-0.016

125

127 Table S-6. Combination of probe-to-card distance (mm) and integration time (μ s) where no

Probe-to-card distance (mm)	Integration time (µs)
3	1500
4	2000
5	3000
6	4500
6.4	4500
7	4500
8	4500
9	4500
10	4500
11	4500
12	4500

128 oversaturation of the detector was observed.

129

130 Table S-7. Number of samples (n = 24, %) using a certain probe-to-card distance (mm) and integration

131 time (µs) for which the difference between the back-calculated Hct and the reference (Sysmex) was

132 within ±0.050 L/L. Back-calculated Hct levels were based on an initial, linear calibration model.

Probe-to-card distance (mm)	Integration time (µs)	Back-calculated Hct within ± 0.050 L/L of the reference (%)
3	1500	67
4	2000	75
5	3000	62
6	4500	87
6.4	4500	92
7	4500	87

134 5. Supplementary Figures

135 136 Fig. S-1. Depicted are a picture of (A) the initial, manual set-up to predict the Hct via UV-Vis spectroscopy developed and described by Capiau et al.² and (B) the automated Hct prediction module 137 138 installed into the CAMAG DBS-MS 500 HCT system. The different parts required for the analysis are

139 indicated.

142 Fig. S-2. Schematic overview of how the spectral data is processed to obtain a Hct value.

- 144 Fig. S-3. Depicted is a picture of four DBS calibration samples which were stored for 24 h (A) at room
- $\,$ temperature (RT) and (B) at 60 °C, the latter to mimic ageing of the DBS. Note the difference in color –
- $\,$ the samples stored at 60 °C being more brown.

- 148 $\,$ Fig. S-4. Depicted is a 25 μL DBS with the 5-position grid indicated by its x,y-coordinates (mm). Both
- 149 calibrators and QCs were scanned in fivefold at the center of the spot (orange dot) and at five different
- 150 positions (orange and white dots).

- 151
- 152 Fig. S-5. Schematic overview of (A) the analysis of the QC samples and (B) the analysis of the samples
- 153 (i.e. subset of the QC samples) used for evaluation of stability and robustness and how the data analysis
- 154 was performed.
- $155\,$ $\,$ ^aSamples were compared to a different DBS (inter-spot comparison).
- 156~ $\,^{\rm b}{\rm Samples}$ were compared to the very same DBS (intra-spot comparison).

- 158 Fig. S-6. Depicted is a photograph of the front and back (the latter mirrored) of capillary DBS with a
- 159 round, normal shape (A & C, respectively) and an atypical shape ('blood smear') (in B & D (3rd and 4th
- 160 DBS), respectively).

162 Fig. S-7. Approximate area of the DBS measured by the spectrophotometer (A) when no grid is used

163 and (B) when a grid is used. The x,y-coordinates (mm) from the center are indicated in the Figures. The

164~ diameter (Ø) of the light beam is approximately 4 mm and the diameter of a 25 μL DBS (used as

165 reference) is approximately 8 mm.

Fig. S-8. Stability results after one and three freeze-thaw (FT) cycles, storage at room temperature (RT) and storage at 60 °C. The mean difference \pm standard deviation (SD) per Hct level (L/L) compared to the reference value (Sysmex) is shown (n = 3 per level, except for Hct levels < 0.20 and > 0.50 L/L, where n = 4 per level). The dashed line indicates the acceptance limit of \pm 0.050 L/L difference.

Fig. S-9. Stability results after one and three freeze-thaw (FT) cycles, storage at room temperature (RT) and storage at 60 °C. Results were obtained using the aged calibration curve (i.e. stored for one day at 60 °C). The mean difference in Hct prediction ± standard deviation (SD) per Hct-level (L/L) compared to fresh DBS is shown (n = 3 per level, except for Hct-levels < 0.20 and > 0.50 L/L, where n = 4 per level). The dashed line indicates the acceptance limits of ±0.050 L/L difference.

179 Fig. S-10. Incurred sample reanalysis (n = 42x2). The Hct predictions on Day 0 (DBS 1) were compared

to (i) the results of the same spot (DBS 1) on Day 3 (blue circles) and (ii) the results of the replicate spot (DBS 2) on Day 3 (orange squares). The dashed line indicates the acceptance limits of ± 0.050 L/L

182 difference, which was met by all samples.

- 185 Fig. S-11. Depicted is a DBS where the 21 different positions where the sample was 'scanned' to
- 186 evaluate the ideal number of 'scans' per DBS are indicated. The center of the spot (0,0) is indicated by
- 187 the orange dot. The x,y-coordinates were set at 0.5 mm (white dots), 1.0 mm (blue dots) and 1.5 mm
- 188 (yellow dots).

 $\,$ Fig. S-12. Depicted is a picture of the prototype Hct prediction module (vertical probe).

193 Fig. S-13. Depicted are pictures of the automated Hct-prediction module, analyzing a DBS using194 different probe-to-card distances: (A) 6.4 mm; (B) 7 mm; (C) 8 mm and (D) 12 mm.