
Table of Contents

1. Materials and methods

1) Construction of DNA Template on the Streptavidin Magnetic Beads

2) Construction of a Chip with Immobilized DNA Template

3) Continuous polymerase extension by 3’-O-modified fluorescent CRTs on a

Chip

4) Decoding algorithm

5) Algorithm to correct errors of original four-color codes

2. Results and Discussion

3. References

Electronic Supplementary Material (ESI) for Analyst.
This journal is © The Royal Society of Chemistry 2022

Materials and methods
1. Construction of DNA Template on the Streptavidin Magnetic Beads
The overall scheme for constructing DNA template immobilized on streptavidin

magnetic beads is shown above. (i) Resuspend the magnetic beads in the vial (or

vortex for 20 seconds), transfer 100 μl of streptavidin magnetic beads into a 1.5 ml

tube. Place the tube into a magnetic stand to collect the beads against the side of the

tube. Remove and discard the supernatant. (ii) Add 1 mL Buffer I (10 mM Tris-HCl,

pH 7.5, 1 mM EDTA, 1 M NaCl, 0.01%-0.1% Tween-20) to the beads, invert the tube

several times or vortex gently for 15 seconds to mix. Remove and discard the

supernatant from magnetic separation. Repeat this step for 2 times. (iii) Add 500 μl of

biotinylated DNA template diluted with Buffer I, makes the beads at a final

concentration of 2 mg/ml. Rotate the tube for 30 minutes at room temperature or 2

hours at 4ºC. (iv) Separate the biotinylated DNA template coated beads with a

magnetic stand. (v) Add 1 mL Buffer I to the beads, invert the tube several times or

vortex gently for 15 seconds to mix. Remove and discard the supernatant from

magnetic separation. Repeat this step for 2 times. (vi) Binding is now complete.

Resuspend the beads in a buffer at a desired concentration with a low salt

concentration, suitable for downstream applications. Use the beads immediately, or

store at 4ºC for late use.

2. Construction of a Chip with Immobilized DNA Template

Pre-cleaned slides were soaked in a 95% acetone/dH2O solution containing 3% 3-

aminopropyltrimethoxysilane (Sigma) for 30 min and then washed three times with

acetone and three times with dH2O, and finally dried by nitrogen and baked at 110℃

for 30 min. Then the carboxy-modified slides were obtained by immersing these

amino-modified slides in 5mg/ml Polyacrylic acid (aladdin) for 20min and then

washed with dH2O, and finally dried by nitrogen [1].

Amino-modified DNA template solutions containing 50 mM MES (2-(N-

morpholino)-ethanesulfonic-acid), pH 5.1 and 20 mg EDC (1-ethyl-3(3-

dimethylaminopropyl)-carbodii-mide) were prepared and made the concentration of

DNA template is 2 uM. The solutions were printed onto the carboxy-modified slides

by a contact-printing microarrayer. After sprinting, the slides were kept in a chamber

with 80% relative humidity at room temperature for 4 h. Then the slides were washed

once with 2×SSC,1% SDS for 5 min, then once with 0.2×SSC, 0.1% SDS for 5 min,

and finally rinsed with dH2O and air dried.

3. Continuous polymerase extension by 3’-O-modified fluorescent CRTs on a Chip

Scheme S1. Continuous polymerase extension by 3’-O-modified fluorescent CRTs on a Chip

As shown in the Scheme S1, after the hybridization of primer and DNA templates

immobilized with a chip, 8 ul of a solution consisting of dATP-N3-Cy5, dTTP-N3-

Cy5, dCTP-N3-Cy5, and dGTP-N3-Cy5, 2 unit of 9°N DNA polymerase, and 20 mM

MnCl2 was spotted on the DNA chip. The extension reaction was conducted at 60℃

for 20min. After washing with 2×SSC,1% SDS for 5 min, and 0.2×SSC, 0.1% SDS

for 5 min, the chip was rinsed with dH2O, and then scanned with a fluorescence

scanner. To perform the deprotection, the DNA chip was immersed with 100 mM

TCEP (pH 8.0) and incubated at 65°C for 15 min. After washing the surface with

dH2O, the chip was scanned again. After that the next extension–signal detection–

deprotection cycle was initiated [2,3].

4. Decoding algorithm

For a single sequencing run with dual-mononucleotide addition, a set of two-digit

strings (𝑁1𝑀1, 𝑁2𝑀2, 𝑁3𝑀3, …, 𝑁𝑘𝑀𝑘) is obtained sequentially. Assuming that

conjugated mixes XY* and WZ* are alternately introduced to react with template in

each sequencing cycle, and a two-digit string 𝑁𝑖𝑀𝑖 is obtained in 𝑖 cycle. The

decoding algorithm, converting the two-digit strings into base-encoding, is as follow:

(1) if 𝑁𝑖 > 0, 𝑀𝑖 = 0, 𝑖 = 1,2,…,𝑘 ― 1, there are 𝑁𝑖 ― 1 base(s) X and one base Y.

(2) if 𝑁𝑖 > 0, 𝑀𝑖 = 0, i = k, there are 𝑁𝑖 ― 1 base(s) X and an encoding (XY).

(3) if 𝑁𝑖 ≥ 0, 𝑀𝑖 > 0, 𝑖 = 1,2,…,𝑘, there are 𝑁𝑖 base(s) X, 𝑀𝑖 ― 1 base(s) W and an

encoding (WZ).

(4) if 𝑁𝑖 ≥ 0, 𝑀𝑖 > 0, 𝑁𝑖+1 = 0, 𝑀𝑖+1 > 0, 𝑖 = 1,2,…,𝑘 ― 1, there are 𝑁𝑖 base(s) X,

𝑀𝑖 ― 1 base(s) W and one base Z.

5. Algorithm to correct errors of original four-color codes

we develop a correction algorithm, combining dynamic programming with genetic

algorithm, to determine the global optimal decoded sequence of four-color codes.

import numpy as np

import random

from tqdm import tqdm

import matplotlib.pyplot as plt

import time

from dynamic import dynamic, read_gene

class GA:

 def __init__(self, epoch=100, N=40):

 self.epoch = epoch

 self.N = N

 self.mu = 0.2

 self.mu_r = 0.2

 # condition for early termination

 self.ep_th = 15

 self.un_mt = 4

 self._init_seed(11)

 def load_data(self, path):

 self.gene_T, self.gene_X, self.mark = read_gene(path)

 self.len_gene = self.gene_T.shape[0]

 def _init_seed(self, seed=0):

 random.seed(seed)

 np.random.seed(seed)

 def pop_init(self):

 population = [np.random.randint(0, 2, self.len_gene) for _ in

range(self.N)]

 return population

 def fit(self, population):

 fitness = []

 for pop in tqdm(population):

 gene = self.gene_X.copy()

 #turn uncertain to determine

 gene[gene == 'X'] =

self.gene_T[np.eye(2)[pop].astype(np.bool)]

 L = dynamic(gene, self.mark)

 fitness.append(L)

 return np.array(fitness)

 def selection(self, pop, fitness):

 # fitness = 1 / (fitness + 1e-9)

 prob = fitness / fitness.sum()

 cumsum = np.cumsum(prob)

 darts = [random.random() for i in range(self.N)]

 darts.sort()

 # roulette wheel selection

 fitin, newin, sele_pop = 0, 0, []

 while newin < self.N:

 if darts[newin] < cumsum[fitin]:

 sele_pop.append(pop[fitin])

 newin = newin + 1

 else:

 fitin = fitin + 1

 random.shuffle(sele_pop)

 # matrix

 father = sele_pop[::2]

 mother = sele_pop[1::2]

 return father, mother

 def crossover(self, father, mother):

 son = []

 for i in range(len(father)):

 ind = np.random.randint(0, 2,

self.len_gene).astype(np.bool)

 son1 = father[i].copy()

 son2 = mother[i].copy()

 son1[ind] = mother[i][ind]

 son2[ind] = father[i][ind]

 son.extend([son1, son2])

 return son

 def mutation(self, _son):

 son = []

 for sn in _son:

 if random.random() < self.mu:

 ind = np.random.choice(a=range(self.len_gene),

size=int(self.mu_r*self.len_gene), replace=False)

 sn[ind] = 1-sn[ind]

 son.append(sn)

 return son

 def update(self, old_pop, son, old_fitness):

 son_fitness = self.fit(son)

 new_pop = np.array(old_pop + son)

 new_fitness = np.concatenate([old_fitness, son_fitness])

 # removal of duplicate individuals

 new_pop, ind = np.unique(new_pop, return_index=True, axis=0)

 new_fitness = new_fitness[ind]

 pop_fitness = list(zip(new_fitness, new_pop))

 pop_fitness = sorted(pop_fitness, key=lambda x: x[0],

reverse=True)

 fitness, pop = zip(*pop_fitness)

 return list(pop[:self.N]), np.array(fitness[:self.N])

 def __call__(self, path):

 self.load_data(path)

 if self.len_gene > 0:

 pop = self.pop_init()

 fitness = self.fit(pop)

 log_fitness_mean, log_mape_max = [fitness.mean()],

[fitness.max()]

 plt.ion()

 plt.figure()

 for i in range(self.epoch):

 father, mother = self.selection(pop, fitness)

 son = self.crossover(father, mother)

 son = self.mutation(son)

 pop, fitness = self.update(pop, son, fitness)

 log_fitness_mean.append(fitness.mean())

 log_mape_max.append(fitness.max())

 print('epoch: {} best_fit: {}'.format(i+1,

log_mape_max[-1]))

 # real-time display of iteration curve

 plt.clf()

 plt.plot(log_fitness_mean, label="fitness_mean",

color='g', linewidth=3)

 plt.plot(log_mape_max, label='fitness_max', color='r',

linewidth=3)

 plt.xlabel('epoch')

 plt.ylabel('fitness')

 plt.legend()

 plt.draw()

 plt.pause(0.01)

 # terminate the iteration early

 if len(log_mape_max) >= self.ep_th and abs(self.mark

- min(log_mape_max[-self.ep_th:])) <= self.un_mt:

 if len(np.unique(log_mape_max[-self.ep_th:])) ==

1:

 break

 best_select = pop[0]

 gene = self.gene_X.copy()

 gene[gene == 'X'] =

self.gene_T[np.eye(2)[best_select].astype(np.bool)]

 else:

 best_select = []

 gene = self.gene_X

 id, L = dynamic(gene, self.mark, is_decode=True)

 np.savez('id', e1=id[2], e2=id[3], select=best_select)

 print('unmatched: {} match length: {}'.format(id[2:], L))

if __name__ == "__main__":

 ga = GA()

 ga('data/aabb.txt') # randomly selected data irrelevant to the

experiment

Results and Discussion

Fig. S1. The enzymatic activity of DNA polymerase at different temperature. The sequencing
reaction rate is temperature dependent, with optimal enzyme activity at 60 ℃for 10 min.

Fig. S2. The ratio of definite bases in a single sequencing cycle obtained by our correctable
decoding sequencing and the current dual-mononucleotide sequencing. We randomly generated
100 different DNA template sequences with length 100 bp and calculated the ratio of determined
bases in a single sequencing cycle by these two kinds of sequencing approach. Different from the
current dual-mononucleotide sequencing that cannot obtain explicit bases, about 75% of the calls
of a single sequencing cycle are unambiguous in the correctable decoding sequencing, with
decoded substantially less effort.

Fig. S3. Sequencing of homopolymer with two different sequencing runs. For any homopolymer
regions, they can be extended exclusively in at least one of the two cycles. So, there is always a
sequencing cycle that the homopolymer is encoded in such a way that only one base information
can be measured per reaction cycle, so every homopolymer can be extend exclusively in at least
one of the two cycles.

Fig. S4. LC/MSD of 3‘-O-N3-dATP

Fig. S5. LC/MSD of 3‘-O-N3-dTTP

Fig. S6. LC/MSD of 3‘-O-N3-dCTP

Fig. S7. LC/MSD of 3‘-O-N3-Dgtp

Fig. S8. The gel electrophoresis of PCR amplified product (m.5301A>G [340 bp])

Table S1. Primer and templates used in used in this study

Template Sequence (5’-3’)

T1 TAAAATGGTCCTCATCGAGACTAGGTGACTAG CCAGTACATCCGATGCCAGTCTG

T2 GATGCGTTAACTCCCCCCCCT CCAGTACATCCGATGCCAGT CTG

T3 GATGCGTTAACTCCCCCCCTA CCAGTACATCCGATGCCAGT CTG

T4 GATGCGTTAACTCCCCCCTAA CCAGTACATCCGATGCCAGT CTG

T5 GATGCGTTAACTCCCCCTAAA CCAGTACATCCGATGCCAGT CTG

T6 GATGCGTTAACTCCCCTAAAA CCAGTACATCCGATGCCAGT CTG

T7 GATGCGTTAACTCCCTAAAAA CCAGTACATCCGATGCCAGT CTG

T8 GATGCGTTAACTCCTAAAAAA CCAGTACATCCGATGCCAGT CTG

T9 GATGCGTTAACTCTAAAAAAA CCAGTACATCCGATGCCAGT CTG

T10 TAAAATGGTCCTCATCGAGACTAGGTGACATTTAG
CCAGTACATCCGATGCCAGTCTG

T11 NH2-TAAAATAAGTTCTTTGGAAATTTCCACAT TTGAAGAAATTTTTCACAT CTCTA

SP1 Biotin-ACTGGCATCGGATGTACTGG

SP2 ATGTGAAAAATTTCTTTCAA

F-P[5301] CAATTACCCACATAGGATGAA

R-P[5301] Biotin-AGGCGTAGGTAGAAGTAGAGGTT

S-P CAAATGGGCCATTATCGAAGAATTCACAAAAAAC

References
[1] X. Shi, C. Tang, D. Zhou, J. Sun, Z. J. E. Lu,PCR-product microarray based on

polyacrylic acid-modified surface for SNP genotyping, Electrophoresis 30 (2010)
1286-1296.

[2] J. Ju, D. H. Kim, L. Bi, Q. Meng, X. Bai, Z. Li, X. Li, M. S. Marma, S. Shi, J. Wu,
J. R. Edwards, A. Romu, N. J. Turro, Four-color DNA sequencing by synthesis
using cleavable fluorescent nucleotide reversible terminators, P. Natl. Acad. Sci.
USA. 103 (2006) 19635-19640.

[3] J. Guo, N. Xu, Z. Li, S. Zhang, J. Wu, D. H. Kim, M. Sano Marma, Q. Meng, H.
Cao, X. Li, S. Shi, L. Yu, S. Kalachikov, J. J. Russo, N. J. Turro, J. Ju, Four-color
DNA sequencing with 3'-O-modified nucleotide reversible terminators and
chemically cleavable fluorescent dideoxynucleotides, P. Natl. Acad. Sci. USA.
105 (2008) 9145-9150.

