Supporting Information for

Smart Molecular Logic System Guided by ppb Level Detection of Hg²⁺ Ions

Monaj Karar, ^{a \perp} Rikitha S Fernandes, ^{b \perp} Nilanjan Dey^b

^aDepartment of Humanities and Science, MLR Institute of Technology, Hyderabad, Telangana-500 043, India ^aDepartment of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana-500078, India

*Email: <u>nilanjandey.iisc@gmail.com</u>, <u>nilanjan@hyderabad.bits-pilani.ac.in</u>

 $^{\bot}\textsc{Both}$ the authors equally contribute to this work

Synthesis and Characterization Data

Synthesis: The precursors 1,10-phenanthroline-2,9-dicarbaldehyde (**3**) and rhodamine hydrazone (**2**) were synthesized following the literature reported procedure.

The precursor 1,10-phenanthroline-2,9-dicarbaldehyde **3** (50 mg, 0.21 mmol) was taken in EtOH with the Rhodamine hydrazone **2** (210 mg, 0.46 mmol). To this, 2-3 drops of glacial acetic acid was added and refluxed at 75°C for 12 h. The resultant precipitate was filtered and washed with EtOH.

Characterization: Pinkish-white solid; (yield: 122 mg, 52%); IR (neat, cm⁻¹); 3321.0, 2930.5, 1650.4, 1530.1, 1275.2, 1220.4, 1015.0, 750.3; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 9.32 (s, 2H), 8.36 (d, J = 8 Hz, 2H), 8.15 (d, J = 8 Hz, 2H), 8.08 (s, 2H), 7.74-7.55 (m, 4H), 7.33 (s, 2H), 7.22 (m, 2H), 6.64 (d, J = 8 Hz, 4H), 6.29 (d, J = 8 Hz, 4H), 3.39 (q, J = 8 Hz, 16H), 1.22 (t, J = 8 Hz, 24H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 12.690, 44.337, 66.422, 98.551, 106.261, 107.930, 120.342, 123.617, 127.550, 128.160, 128.662, 128.844, 133.510, 136.121, 145.245, 148.773, 152.188, 153.267, 155.469, 165.073; HRMS m/z calcd for C₇₀H₆₈N₁₀O₄ (M + Na)⁺ 1135.5323, found 1135.5325; anal. calcd for C₇₀H₆₈N₁₀O₄: C, 75.52; H, 6.16; N, 12.58%. Found: C, 75.2178; H, 6.1436; N, 12.5368%.

a. SeO₂, Dioxane reflux, 2h. (Yield: 55 %); b. N₂H₄.H₂O, EtOH, rt. (Yield: 72 %); c. MeOH, stir., rt. (Yield: 85 %)

Scheme S1. Synthesis scheme of probe 1.

Fig. S1 ¹H-NMR spectrum of **1** in DMSO-d₆ medium.

Fig. S2 ¹³C-NMR spectrum of **1** in DMSO-d₆ medium.

Fig. S3 HRMS mass spectrum of 1.

Additional Spectral Data

Fig. S4 Absorbance of 1 at 310 nm at different time-periods.

Fig. S5 (a) UV-vis titration of **1** (10 μ M) in acetonitrile-water pH 7.4 (1:1) with the gradual addition of Cu²⁺. (b) Plot of the absorbance of **1** (10 μ M) at 562 nm with added Cu²⁺ in μ M.

Fig. S6 (a) UV-vis titration of **1** (10 μ M) in acetonitrile-water pH 7.4 (1:1) with the gradual addition of Hg²⁺. (b) Plot of the absorbance of **1** (10 μ M) at 562 nm with added Hg²⁺ in μ M.

Fig. S7 Calculation of HOMO-LUMO energy gap of (a) **1 (b) 1 + Hg²⁺** using B3LYP/6-31G* level of theory for C, H, N, O atoms and LANL2DZ for Hg.

Fig. S8 Effect of pH on the response of **1** towards (a) Cu^{2+} and (b) Hg^{2+} in acetonitrile-water (1:1) medium monitored at 555 nm.

Fig. S9 (a) Fluorescence decay plot of **1** (5 μ M, λ_{ex} = 355 nm) in acetonitrile-water (pH 7.4) 1:1 medium (λ ex. = 510 nm) with addition of Hg²⁺ and CN⁻ ion.

Fig. S10 (a) Fluorescence titration of **1** (5 μ M) in acetonitrile-water (pH 7.4) 1:1 medium (λ ex. = 355 nm) with the gradual addition of Hg²⁺. (b) Plot of the fluorescence intensity at 585 with added Hg²⁺ ion in μ M.

Fig. S11 Job's plot of **1** with Cu²⁺ and Hg²⁺ in Acetonitrile-water 1:1 medium (pH 7.4) For Job's plot the total concentration $[1] + [M^{2+}] = 1.0 \times 10^{-4} \text{ M}.$

Fig. S12 Calculation of binding constant of **1** with (a) Hg^{2+} (b) Cu^{2+} using Benesi-Hildebrand method for 1:1 binding.

Fig. S13 ESI-MS spectra of **1** with Cu²⁺ and Hg²⁺ in Acetonitrile-water 1:1 medium (pH 7.4).

Fig. S14 FT-IR spectra of **1** in presence of Hg^{2+} in 1:1 acetonitrile-water medium.

Fig. S15 (a) UV-vis titration of 1 (10 μ M) in acetonitrile-water pH 7.4 (1:1) with the gradual addition of I⁻ in presence of Cu²⁺ (1:1). (b) Plot of the absorbance at 562 nm with added I⁻ in μ M.

Fig. S16 (a) UV-vis titration of **1** (10 μ M) in acetonitrile-water pH 7.4 (1:1) with the gradual addition of CN⁻ in presence of Cu²⁺ (1:1). (b) Plot of the absorbance at 562 nm with added CN⁻ in μ M.

Fig. S17 (a) UV-vis titration of **1** (10 μ M) in acetonitrile-water pH 7.4 (1:1) with the gradual addition of CN⁻ in presence of Hg²⁺ (1:1). (b) Plot of the absorbance at 562 nm with added CN⁻ in μ M.

Fig. S18 (a) Fluorescence spectra of **1** (5 μ M) in acetonitrile-water (pH 7.4) 1:1 medium (λ ex. = 510 nm) upon addition of different anions in presence of Hg²⁺ (1:1). (b) Plot of the fluorescence intensity at 585 with added Hg²⁺ ion in μ M.

Fig. S19 (a) Fluorescence titration of **1** (5 μ M) in acetonitrile-water (pH 7.4) 1:1 medium (λ ex. = 510 nm) with the gradual addition of CN⁻ in presence of Hg²⁺. (b) Plot of the fluorescence intensity at 585 with added equiv. of CN⁻ ion.

Fig. S20 Experimental evidence for reversible interaction of CN^{-} interaction in presence of Hg^{2+} and Cu^{2+} .

Fig. S21 Change in partial ¹H-NMR spectra of **1** upon gradual addition of CN^{-} in presence of Hg^{2+} (1:1) in CDCl₃ medium (molecular structure has been shown).

Fig. S22 The paper-discs upon addition of Cu^{2+} and Hg^{2+} : Changes in red color under normal day-light and changes in red fluorescence under long UV-lamp.

4. Considering the absorption changes of 1 upon interaction with Cu²⁺ and I⁻

Table S1: Truth table for binary arithmetic absorption responses received from **1** upon interaction with Cu^{2+} and CN^{-}/I^{-} , after application of proper thresholds to the corresponding channel.

Cu ²⁺	CN⁻/I⁻	A ₅₆₂ nm (INHIBIT)	
0 1	0	0 1	
0 1	1 1	0 0	
ON		AND	

Fig. S23 Optical bar responses and corresponding schematic logic presentation of INHIBIT logic gate based on absorbance responses of **1** at 562 nm, considering Cu²⁺ and CN⁻/I⁻ as chemical inputs.

4psorbance (10)