ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

In situ voltammetric analysis of 2,4-dichlorophenoxyacetic acid in environmental water using a boron doped diamond electrode and an adapted unmanned air vehicle sampling platform

José Claudiano Dantas Neto^a, Vagner Bezerra dos Santos^{*a}, Severino Carlos Bezerra de Oliveira^b, Willian Toito Suarez^c, Josiane Lopes de Oliveira^c

Electronic Supplementary Information

^{a.} Fundamental Chemistry Department, Federal University of Pernambuco, Recife, PE, Brazil.

^{b.} Department of Chemistry, Federal Rural University of Pernambuco, Recife-PE, Brazil.

^{c.} Department of Chemistry, Federal University of Viçosa, Viçosa, MG, Brazil.

 $^{^{\}rm +}$ vagner.bsantos@ufpe.br. Av. Jornalista Anibal Fernandes, s/nº, Cidade Universitária, Recife, PE, 50740-560, Brazil.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

Figure 1S. Study of the pH of the supporting electrolyte using a solution of 0.5 mol L⁻¹ Na₂SO₄ at a concentration of 10.48 μ mol⁻¹ of 2,4-D. SWV parameters: f = 60 Hz, a = 70 mV, , $\Delta Es = 5$ mV. The pH were regulated with H₂SO₄ and NaOH solutions, both at 0.5 mol L⁻¹.

Figure 2S. SW voltammograms obtained from 10.48 μ mol L⁻¹ of 2,4-D for trichloroacetic acid, sodium sulfate and phosphate buffer electrolytes (all 0.5 mol L⁻¹ with pH adjusted to 2.0 using). SWV parameters: f = 60 Hz, a = 70 mV, , $\Delta Es = 5$ mV.

Figure 3S. SW voltammograms of 10.48 μ mol L⁻¹ of 2,4-D in sodium sulfate with different concentrations (0.1 mol L⁻¹, 0.5 mol L⁻¹ and 1.0 mol L⁻¹), pH was adjusted to 2.0 using 0.5 mol L⁻¹sulfuric acid. SWV parameters used: *f* = 60 Hz, *a* = 70 mV, , ΔEs = 5 mV.

Table 1S. SWV parameters investigated for detection of 2,4-D with BDDE.

SWV Parameters	Studied range	Value selected
<i>a</i> (mV)	10-100	100
<i>ΔEs</i> (mV)	1-10	10
<i>f (</i> Hz)	10-200	200

Journal Name

Figure 4S. SW voltammograms obtained from of 10.43 μ mol L⁻¹ of 2.4-D in sodium sulfate 0.5 mol L⁻¹. *f* (Hz) = 10, 30, 50, 70, 90, 100 Hz, *a* = 70 mV, ΔEs = 6 mV. Insertion: Graphic of E_p vs log *f*. pH was adjusted to 2.0 using 0.5 mol L⁻¹sulfuric acid.

Table 2S. Relative error values obtained in interfering studies.

Relative error (%)				
K+	Cu ²⁺	Cl-	NO ₃ -	
0.98	2.37	3.24	2.89	

ARTICLE

Figure 5S. Standard addition curves for quantification of 2,4-D in spiked water samples (1, 2 and 3) collected using adapted UAV with *in situ* analysis by SWV. SWV parameters: f = 60 Hz, a = 70 mV, $\Delta Es = 5$ mV.

Figure 6S: Analytical curve for detection of 2,4-D in water using the GC-MS method. The measures were performed in triplicate.