Improving Photostability of Azetidine Substituted Naphthalimide Dyes with Large Stokes Shifts for Imaging of Lipid Droplet in Live Cell

Xinwei Li,^{a‡} Jiqing Bian,^{a‡} Mingyang Fu,^a Yan Zhang,^a Hongmei Liu, ^{a, c*} Baoxiang Gao^{a, b, c *}

^a College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
^b Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University,

^o Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, P. R. China ^c Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Hebei University, Ministry of

^c Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Hebei University, Ministry of Education

[‡]These authors contributed equally to this work, * Corresponding author. e-mail: <u>wzdd_may@163.com</u>, <u>bxgao@hbu.edu.cn</u>

Table of Contents

Part A: Experimental Section: General information on materials

- 1 General information on materials
- **2** Supplementary Table and Figures

Part B: ¹H-NMR spectrum, ¹³C-NMR spectrum and Mass spectrum

Part A: Experimental Section

1 General information on materials

The chemical reagents were purchased from J&K Scientific Ltd or Beijing zhong sheng hua teng Technology Co., Ltd. and used as received. Solvents were either employed as purchased or dried according to procedures described in the literature. Deionized water was obtained from a Milli-Q water purification system (Millipore). Phosphate buffer saline (PBS) was purchased from Life Technologies Co., Ltd. All glassware was ovendried prior to use when water- and/or air-sensitive reagents were used. The synthetic steps were performed under ambient atmosphere unless stated otherwise. The ¹H-NMR spectra were recorded at 20°C on 400 MHz NMR spectrometer (Bruker). The ¹³C-NMR spectra were recorded at 20°C on 101 MHz NMR spectrometer (Bruker). Mass spectra were carried out using Thermo Finnigan TSQ Quantum Ultra AM EMR Mass Spectrometry or ApexUltra

Fourier transform ion cyclotron resonance mass spectrometry (Bruker). UV/Vis spectra were recorded with a Shimadzu WV-2550 spectrophotometer. Fluorescence spectra were recorded on a Shimadzu RF-5301 fluorescence spectrophotometer. Fluorescence microscopy images of labelled cells were obtained with spectral confocal laser scanning microscopy (Olympus Fluoview FV-1000).

2 Supplementary Table and Figures

Table 51 photorumneseenee quantum yields of the MT GIVI dyes in different solvents.							
Comp , Φ (%)	Toluene	DCM	Ethyl Acetate	Dioxane	Methanol	DMSO	PBS
LD-Blue	79	85	87	96	90	47	46
MFGNI-1	68	65	62	83	56	48	43
LD-Green	62	61	39	93	47	43	41

Table S1 photoluminescence quantum yields of the MFGNI dyes in different solvents.^a

^a quinine sulfate dihydrate (QSH) in 1.0 M H₂S0₄ (Φ = 55%) as the standard.

Photoluminescence quantum yields of **MFGNI** dyes were determined in different solvents, respectively, with quinine sulfate dihydrate as reference. The quantum yield was calculated using eq (1)

$$\Phi_{\rm u} = \left[(A_{\rm s} {\rm FA}_{\rm u} \eta^2) / (A_{\rm u} {\rm FA}_{\rm s} \eta_0^2) \right] \Phi_{\rm s} \tag{1}$$

where A_s and A_u are the absorbance of the reference and sample solution at the reference excitation wavelength, FA_s and FA_u are the corresponding integrated fluorescence intensities, and η and η_0 are the solvent refractive indexes of sample and reference, respectively. Absorbance of sample and reference at their respective excitation wavelengths was controlled to be lower than 0.1.

Figure S1 Normalized absorption and fluorescence spectra of **LD-Blue** in different polarity solvents.

Figure S2 Normalized absorption and fluorescence spectra of **MFGNI-1** in different polarity solvents.

Figure S3 Normalized absorption and fluorescence spectra of LD-Green in different polarity solvents.

Figure S4 Absorption and fluorescence spectra of MFGNI dyes in PBS (pH=7.4).

Figure S5 Absorption and fluorescence spectra of **LD-Blue** in dichloromethane solution under continuous irradiation with a 250 W Xe lamp.

Figure S6 Absorption and fluorescence spectra of LD-Green in dichloromethane solution under continuous irradiation with a 250 W Xe lamp.

Figure S7 Absorption and fluorescence spectra of MFGNI-1 in dichloromethane solution under continuous irradiation with a 250 W Xe lamp.

Part B: ¹H-NMR spectrum, ¹³C-NMR spectrum and Mass spectrum

Figure S10 MS spectrum of 4-bromo-N-ethylglycinate-1,8-naphthalimide

Figure S11 ¹H NMR (400 MHz) spectra of LD-Blue in CDCl₃

Figure S13 MS spectrum of LD-Blue

Figure S16 MS spectrum of MFGNI-1

Figure S17¹H NMR (400 MHz) spectra of LD-Green in CDCl₃

Figure S18¹³C NMR (100 MHz) spectra of LD-Green in CDCl₃

Figure S19 MS spectrum of LD-Green