1	Supporting Information				
2	Gold nanoclusters encapsulated into zinc-glutamate metal organic frameworks				
3	for efficient detection of H ₂ O ₂				
4					
5	Hongyu Chen*, Yuan Chang, Ran Wei, Pengcheng Zhang				
6	Henan Key Laboratory of Rare Earth Functional Materials; International Joint				
7	Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal				
8	University, Zhoukou 466001, China.				
9					
10					
11					
12					
13					
14					
15					
16					
18					
19					
20					
21					
22 23					
23 24					
25					
26					
27	*Corresponding author. Tel: +86-394-8178518; fax: +86-394-8178518;				
28	E-mail address: chy199100@105.com				
29					
5U 21					
31					

1 Instruments

Transmission electron microscopy (TEM) images were obtained on a JEOL-1230 (JEOL) transmission electron microscope operating at 100 kV. High-resolution TEM (HRTEM) images were obtained via a JEOL-1230 transmission electron microscope equipped with energy dispersive X-ray spectrometer (EDX) analyses at 100 kV. The crystalline phases of AuNCs@ZnGlu-MOF were characterized using a Rigaku 2500 (Japan) X-ray diffractometer (XRD). X-ray photoelectron spectrum (XPS) was performed on K-Alpha 1063 (Thermo Fisher Scientific). The Zeta potential measurement was performed by the Nano-ZS Zetzsozer ZEN3600 (Malvern Instruments Ltd., UK). Fourier transform infrared (FT-IR) spectra were obtained on an FT-IR spectrophotometer (Nicolet Instrument Co., USA). Fluorescence spectra were carried out on F-7000 fluorescence spectrophotometer (Hitachi, Japan). Steadystate luminescence lifetime measurements were performed using an Edinburgh FLS 980 Lifetime and Steady-State spectrometer.

4 Table S1 Detail information for preparation of AuNCs@ZnGlu-MOF with different
5 portions of ZnGlu-MOF.

	AuNCs@ZnGlu-MOF	N = 5	N=4	N=3	N=2	N=1
	$ZnSO_4.7H_2O(g)$	0.036	0.018	0.009	0.0023	0.0012
	L-glutamate (g)	0.018	0.009	0.0045	0.0011	0.0005
	NaOH (g)	0.0125	0.0063	0.0031	0.0008	0.0004
	Vethanol:VH ₂ O			1:1		
	AuNCs (mL)			1		
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						

Mean (mV) Area (%) St Dev (mV)

7 Fig. S8 Effects of I⁻ concentrations (A), AuNCs@ZnGlu-MOF amount (B), pH (C)
8 and incubation time (D) on the fluorescence responce of the nanosensor for H₂O₂
9 detection. F₀ and F stand for the fluorescent intensities of AuNCs@ZnGlu10 MOF/HRP/I⁻ mixture in the absence and presence of H₂O₂, respectively.

- **Table S2** Comparison of different methods for the determination of H_2O_2 .

Methods	Linear range	Detection limit	Reference
	(µM)	(µM)	
Colorimetry	10-1000	5.29	[1]
Colorimetry	0.5-100	0.047	[2]
Colorimetry	10000-100000	54	[3]
Fluorometry	0-40	0.26	[4]
Fluorometry	0-20	0.86	[5]
Fluorometry	0-30	2.1	[6]
Fluorometry	2-50	0.57	[7]
Fluorometry	0.02-5	0.013	Present work

6 Fig. S9 Fluorescence response of AuNCs@ZnGlu-MOF in the presence of H₂O₂ or
7 other substances (Na⁺, cysteine (Cys), NO₃⁻, homocysteine (Hcys), ascorbic acid (AA),
8 lysine (Lys), fructose (Fru), CO₃²⁻, glucose (Glu), dopamine (DA), bovine serum
9 (BSA), sucrose (Suc), alanine (Ala), uric acid (UA)). The concentration of H₂O₂ was
10 5 μM, and the level of other species were 50 μM.

3

4 **Table S3** Detection of spiked H_2O_2 in real samples.

5

Samples	Added	Measured	Recovery	RSD
	(µM)	(µM)	(%)	(n=3, %)
	0.05	0.053	106	2.98
Serum 1	0.5	0.48	96.0	3.15
	2	1.97	98.5	2.36
	0.05	0.048	96.0	1.95
Serum 2	0.5	0.52	104	2.31
	2	1.95	97.5	4.16
	0.05	0.049	98.0	2.17
Serum 3	0.5	0.49	96.0	3.53
	2	1.91	95.5	2.12

6

7

8 Reference

- 9 1. H. Liu, Y. Ding, B. Yang, Z. Liu, Q. Liu and X. Zhang, Sens. Actuators, B, 2018,
 271, 336-345.
- X. Xu, P. Luo, H. Yang, S. Pan, H. Liu and X. Hu, *Sens. Actuators, B*, 2021, 335,
 129671.
- L. Li, X. Liu, R. Zhu, B. Wang, J. Yang, F. Xu, S. Ramaswamy and X. Zhang,
 ACS Sustain. Chem. Eng., 2021, 9, 12833-12843.
- 15 4. P. Zhao, K. Wang, X. Zhu, Y. Zhou and J. Wu, Dyes Pigm., 2018, 155, 143-149.
- 16 5. S. Liu, S. Mo, L. Han, N. Li, Y. Fan, N. Li and H. Luo, *Anal. Chim. Acta*, 2019,
 17 1055, 81-89.
- 18 6. M. Ren, B. Deng, K. Zhou, X. Kong, J. Wang and W. Lin, Anal. Chem., 2017, 89,

- 1 552-555.
- 2 7. Q. Lu, J. Wang, B. Li, C. Weng, X. Li, W. Yang, X. Yan, J. Hong, W. Zhu and X.
- 3 Zhou, Anal. Chem., 2020, **92**, 7770-7777.
- 4
- 5