Electronic supplementary information

Three-dimensional porous reduced graphene oxide modified electrode for highly sensitive detecting trace rifampicin in milk

Keying Zhang^{a b, c}, Yan Wang^a, Hongyan Wang^{a*}, Fajun Li^a, Yu Zhang^a, Na Zhang^{a*}

^a Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China ^b Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China

^c State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China

*Corresponding Authors:

E-mail: zhangky1983@163.com (Z. Zhang)

suzhouwhy@163.com (H. Wang)

Fig. S1. (A) DPVs of 4.0×10^{-10} mol/L RIF at the different 3D pRGO/GCE independently prepared in 0.1 mol/L PBS (pH = 6.0); (B) The oxidation peak current of the concentration of RIF vs. different electrode.

Fig. S2. (A) DPVs of 4.0×10^{-10} mol/L RIF at the 3D pRGO/GCE kept for different times in 0.1 mol/L PBS (pH = 6.0); (B) The oxidation peak current of the concentration of RIF vs. time.

Fig. S3. (A) DPVs of 8.0×10^{-10} mol/L RIF at the 3D pRGO/GCE with different potential interferents in 0.1 mol/L PBS (pH = 6.0); (B) The oxidation peak current of the concentration of RIF vs. potential interferents.