Supporting Information

A dual-channel "on-off-on" fluorescent probe for the detection and discrimination of Fe^{3+} and Hg^{2+} in piggery feed and swine wastewater

Qing Fan^{a, b, 1}, Guang-Ming Bao^{a, c, 1}, Si-Han Li^a, Si-Yi Liu^a, Xin-Ru Cai^a, Yi-Fan Xia^b, Wei Li^b, Xiao-Ying Wang^a, Ke Deng^a, Hou-Qun Yuan^{b, c, *}

^a Institute of Veterinary Drug/Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, PR China.

^b College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, P.R. China.

^c School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, P.R. China.

¹ These authors contributed equally to this work.

^{*}Corresponding authors. (E-mail: hqyuan2014@126.com)

Table S1
Comparison of reported sensing systems for fluorescent CDs with current work.

Type of Probes	Carbon sources	Ion detected	Linear range(μM)	LOD (µM)	QY(%)	Ref.
Feathers-CDs ¹	Pigeon feathers	Fe ³⁺ &Hg ²⁺	0-1.6 & 0-1.2	0.0609 & 0.0103	24.87	36
Soot-CDs ²	Candle soot	Fe ³⁺ &Hg ²⁺	20–50	0.01&0.05	-	38
Leaves-CDs ³	Bamboo leaves	Hg ²⁺ &Pb ²⁺	0.001-1&0.0006-0.8	0.00022 & 0.00014	3.8&4.7	41
Soot-CDs ⁴	Diesel soot	Fe ³⁺ &Hg ²⁺	0-12	0.325& 0.898	8	58
Bluegrass-CDs ⁵	Kentucky bluegrass	Fe^{3+} & Mn^{2+}	5–25	1.4 & 1.2	7	59
Bergamot-CDs ⁶	Jinhua bergamot	Fe ³⁺ &Hg ²⁺	0.025-100&0.01-100	0.075& 0.0055	50.78	63
Blood-CDs ⁷	Chicken blood	Fe ³⁺ &Hg ²⁺	0-120&0-100	0.23&0.17	13.78	This work

¹ Synthesis with Pigeon feathers as carbon source.

² Synthesis with Candle soot as carbon source.

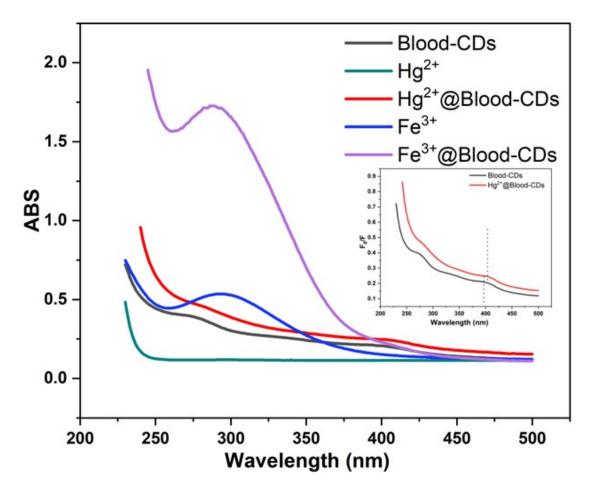
³ Synthesis with Bamboo leaves as carbon source.

⁴ Synthesis with Diesel soot as carbon source.

⁵ Synthesis with Kentucky bluegrass as carbon source.

⁶ Synthesis with Jinhua bergamot as carbon source.

⁷ Synthesis with Chicken blood as carbon source.

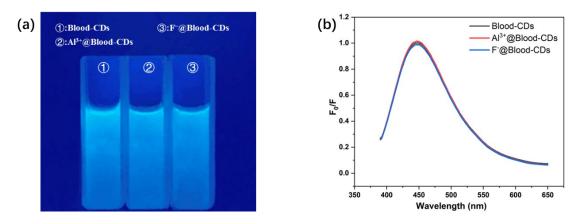

Fig. S1. PL decay curves of Blood-CDs, Hg^{2+} @Blood-CDs, and Fe^{3+} @Blood-CDs.

Table. S2. The lifetime values of Blood-CDs, Hg^{2+} @Blood-CDs, and Fe^{3+} @Blood-CDs.

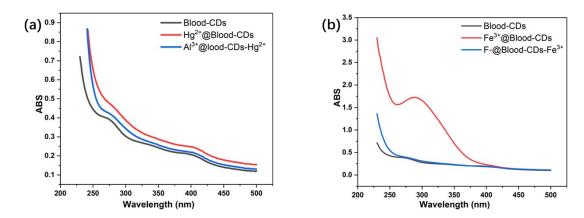

Sample	τ_1/ns	A ₁ /%	τ_2/ns	A ₂ /%	$\tau_{average}/ns$
Blood-CDs	0.544	93.48	3.118	6.52	0.712
Hg ²⁺ @Blood-CDs	0.493	92.77	3.004	7.23	0.674
Fe ³⁺ @Blood-CDs	0.511	93.04	3.013	6.96	0.685

Fig. S2. UV-vis absorption spectra of Blood-CDs, Hg^{2+} , Hg^{2+} @Blood-CDs, Fe^{3+} , and Fe^{3+} @Blood-CDs. The concentration of all the ions were 500 μ M.

Fig. S3. (a) Fluorescence of Blood-CDs, Al³⁺@Blood-CDs, and F-@Blood-CDs under UV lamp (365 nm); (b) Fluorescence spectra of Blood-CDs, Al³⁺@Blood-CDs, and F-@Blood-CDs under excitation at 370 nm.

Fig. S4. (a) UV-vis absorption spectra of Blood-CDs, Hg²⁺@Blood-CDs, and Al³⁺@Blood-CDs-Hg²⁺; (b) UV-vis absorption spectra of Blood-CDs, Fe³⁺@Blood-CDs, and F-@Blood-CDs-Fe³⁺.