Supporting Information A dual-channel "on-off-on" fluorescent probe for the detection and discrimination of Fe^{3+} and Hg^{2+} in piggery feed and swine wastewater Qing Fan^{a, b, 1}, Guang-Ming Bao^{a, c, 1}, Si-Han Li^a, Si-Yi Liu^a, Xin-Ru Cai^a, Yi-Fan Xia^b, Wei Li^b, Xiao-Ying Wang^a, Ke Deng^a, Hou-Qun Yuan^{b, c, *} ^a Institute of Veterinary Drug/Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, PR China. ^b College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, P.R. China. ^c School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, P.R. China. ¹ These authors contributed equally to this work. ^{*}Corresponding authors. (E-mail: hqyuan2014@126.com) Table S1 Comparison of reported sensing systems for fluorescent CDs with current work. | Type of Probes | Carbon sources | Ion detected | Linear range(μM) | LOD (µM) | QY(%) | Ref. | |----------------------------|-----------------------|------------------------------------|--------------------|----------------------|---------|--------------| | Feathers-CDs ¹ | Pigeon feathers | Fe ³⁺ &Hg ²⁺ | 0-1.6 & 0-1.2 | 0.0609 &
0.0103 | 24.87 | 36 | | Soot-CDs ² | Candle soot | Fe ³⁺ &Hg ²⁺ | 20–50 | 0.01&0.05 | - | 38 | | Leaves-CDs ³ | Bamboo leaves | Hg ²⁺ &Pb ²⁺ | 0.001-1&0.0006-0.8 | 0.00022 &
0.00014 | 3.8&4.7 | 41 | | Soot-CDs ⁴ | Diesel soot | Fe ³⁺ &Hg ²⁺ | 0-12 | 0.325&
0.898 | 8 | 58 | | Bluegrass-CDs ⁵ | Kentucky
bluegrass | Fe^{3+} & Mn^{2+} | 5–25 | 1.4 & 1.2 | 7 | 59 | | Bergamot-CDs ⁶ | Jinhua bergamot | Fe ³⁺ &Hg ²⁺ | 0.025-100&0.01-100 | 0.075&
0.0055 | 50.78 | 63 | | Blood-CDs ⁷ | Chicken blood | Fe ³⁺ &Hg ²⁺ | 0-120&0-100 | 0.23&0.17 | 13.78 | This
work | ¹ Synthesis with Pigeon feathers as carbon source. ² Synthesis with Candle soot as carbon source. ³ Synthesis with Bamboo leaves as carbon source. ⁴ Synthesis with Diesel soot as carbon source. ⁵ Synthesis with Kentucky bluegrass as carbon source. ⁶ Synthesis with Jinhua bergamot as carbon source. ⁷ Synthesis with Chicken blood as carbon source. Fig. S1. PL decay curves of Blood-CDs, Hg^{2+} @Blood-CDs, and Fe^{3+} @Blood-CDs. **Table. S2.** The lifetime values of Blood-CDs, Hg^{2+} @Blood-CDs, and Fe^{3+} @Blood-CDs. | Sample | τ_1/ns | A ₁ /% | τ_2/ns | A ₂ /% | $\tau_{average}/ns$ | |-----------------------------|-------------|-------------------|-------------|-------------------|---------------------| | Blood-CDs | 0.544 | 93.48 | 3.118 | 6.52 | 0.712 | | Hg ²⁺ @Blood-CDs | 0.493 | 92.77 | 3.004 | 7.23 | 0.674 | | Fe ³⁺ @Blood-CDs | 0.511 | 93.04 | 3.013 | 6.96 | 0.685 | **Fig. S2.** UV-vis absorption spectra of Blood-CDs, Hg^{2+} , Hg^{2+} @Blood-CDs, Fe^{3+} , and Fe^{3+} @Blood-CDs. The concentration of all the ions were 500 μ M. **Fig. S3.** (a) Fluorescence of Blood-CDs, Al³⁺@Blood-CDs, and F-@Blood-CDs under UV lamp (365 nm); (b) Fluorescence spectra of Blood-CDs, Al³⁺@Blood-CDs, and F-@Blood-CDs under excitation at 370 nm. **Fig. S4.** (a) UV-vis absorption spectra of Blood-CDs, Hg²⁺@Blood-CDs, and Al³⁺@Blood-CDs-Hg²⁺; (b) UV-vis absorption spectra of Blood-CDs, Fe³⁺@Blood-CDs, and F-@Blood-CDs-Fe³⁺.