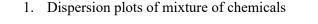
Supplementary Materials for

Machine Learning and Signal Processing assisted Differential Mobility Spectrometry (DMS) Data Analysis for Chemical Identification

Pranay Chakraborty¹, Maneeshin Y. Rajapakse^{1,2}, Mitchell M. McCartney^{1,2,3}, Nicholas J. Kenyon^{2,3,4}, Cristina E. Davis^{1,2,3,*}


¹ Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA, USA

² UC Davis Lung Center, One Shields Avenue, Davis, CA, USA

³ VA Northern California Health Care System, 10535 Hospital Way, Mather, CA, USA

⁴ Department of Internal Medicine, University of California Davis, Davis, CA, USA

*Corresponding author: <u>cedavis@ucdavis.edu</u>

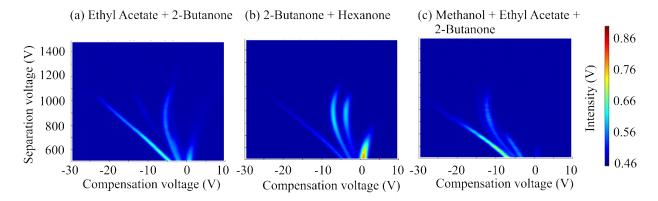


Figure S1: Dispersion plots of mixture of chemicals: (a) Ethyl Acetate + 2-Butanone, (b) 2-Butanone + Hexanone, and (c) Methanol + Ethyl Acetate + 2-Butanone.

2. Comparison of machine learning algorithms

Table S1: Comparison of different machine learning algorithms in identifying chemicals from the dispersion data of samples

	Approach	Reported prediction accuracy for
		testing data
Rajapakse et al. [1]	Partial least squared discriminant analysis	0-100% (performance varied
		depending on the mixture
		complexity)
Yeap et al. [2]	Support vector machine + Bag of visual words	~90 %
Li et al. [3]	Principal component analysis + support vector	66.7-80%
	machine	
Li et al. [3]	Convolutional neural network	86.7 -100%
Current work	Convolutional neural network	$\sim 100 \%$ (for the considered
		cases)

- 1. Rajapakse, M.Y., et al., *Automated chemical identification and library building using dispersion plots for differential mobility spectrometry*. Analytical Methods, 2018. **10**(35): p. 4339-4349.
- 2. Yeap, D., et al., Machine vision methods, natural language processing, and machine learning algorithms for automated dispersion plot analysis and chemical identification from complex mixtures. Analytical chemistry, 2019. **91**(16): p. 10509-10517.
- 3. Li, H., et al., *Identification of Specific Substances in the FAIMS Spectra of Complex Mixtures Using Deep Learning*. 2021. **21**(18): p. 6160.