Supporting Information

Simple and sensitive determination of sulfite in Chinese herbal teas by ultrahigh-performance liquid chromatography tandem mass spectrometry

Leiwenxuan Yang^{a,c}, Gaohua Hu^{a,c}, Yali Huang^{a,c}, Chen Wang^{a,c}, Xin Liu^{a,b}, Chengyin Lu^{a,b}, Hongping Chen^{a,b}, Jianyang Zhang^{a*} and Guicen Ma^{a,b*}

^aTea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China

^bLaboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of

Agriculture and Rural Affairs, Hangzhou, 310008, China

^cGraduate School of Chinese Academy of Agricultural Sciences, Beijing, China

E-mail: mgc1314@tricaas.com; xianyu20082003@tricaas.com.

Phone:+86-571-8665-1650, Fax:+86-571-8665-2004

Address: Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejing Province,310008, China.

1.1 Preparation of extraction solution

A 2% formaldehyde buffer solution was prepared by weighing 0.77 g ammonium acetate in ultrapure water, adding 10.8 mL of 37% formaldehyde solution in a 200 mL volumetric flask and diluting to 200 mL with water. The pH of the solution was adjusted at 4.5 by dropwise addition of acetic acid. The working 0.2% formaldehyde extraction solution was diluted the 2% formaldehyde solution with ultrapure water. The 0.2% and 2% formaldehyde solutions were stored at 4°C for at least one week and one month.

1.2 Standard Preparation

Stock standard solution of HMS was prepared at 1000 mg L⁻¹ by accurately weighing 10 mg of sodium sulfite (Na₂SO₃) and dissolving in 2% formaldehyde solution into 10 mL volumetric flask. On the day of analysis, further dilutions with 0.2% formaldehyde solutions were obtained different concentrations of 1, 5,10 and 100 mg L⁻¹ of Na₂SO₃ working standard solutions.

1.3 Statistical Analysis

Determination of sulfite concentration of herbal tea samples were compared between UPLC-MS/MS and IT method using a two-sample independent t-test (p < 0.05). All the analysis were done employing SPSS version 26 (SPSS, Inc., Chicago, IL, USA)

Q1 Mass (m/z)	Q2 Mass (m/z)	dwell time (ms)	DP(V)	EP(V)	CE (V)
111.0	80.8	300	-42.0	-10.0	-16.0
111.0	79.9	300	-42.0	-10.0	-35.0

Table S1 The MS/MS parameters for the analysis of HMS

Table S2 Matrix effects of different adsorbents

Adsorbents	ME (%)		
Crude	-81.1		
CS/prGO/DM	-63.5		
GCB	-67.6		
C18	-70.9		
PVPP	-79.1		
SAX	-81.5		
PSA	-80.1		

Table S3 The corrected calibration equation of sulfite in three types of herbal teas.

Matrix	Corrected calibration equation
Chrysanthemum	$y = 6.727 \times 10^{6} x + 7.211 \times 10^{3}$
Rose	$y = 1.467 \times 10^7 x + 1.075 \times 10^4$
Wolfberry	$y = 1.137 \times 10^7 x + 3.913 \times 10^4$

Table S4 The proposed method was compared with other previous reported LC-MS/MS methods for determination of sulfites in food

Method	Matrix	Extraction	Clean-up	Organic	Recovery	Reference
-		procedure	procedure	solvent(mL)	(%)	
LC-	Chrysanthemum	Once	dSPE(CS/pr	0	84-103	This work
MS/MS	Rose	extraction	GO/DM			
	Wolfberry		composites)			
LC-	white grape juice	Multiple	SPE (C18	6	86-114	US FDA
MS/MS	molasses	extraction	SPE			Method
	dried potatoes		cartridge)			C-004.03
	crystallized					
	ginger					
	dried apricots					
	frozen raw shrimp					

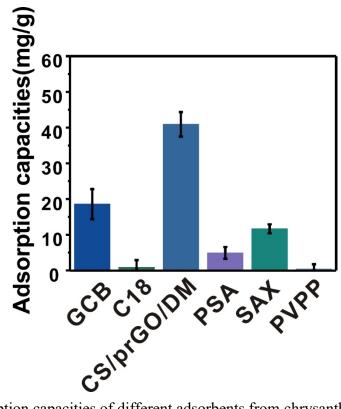


Fig. S1 Adsorption capacities of different adsorbents from chrysanthemum extracts.

Fig. S2 The photographs of chrysanthemum sample extract after purification by different dSPE adsorbents.

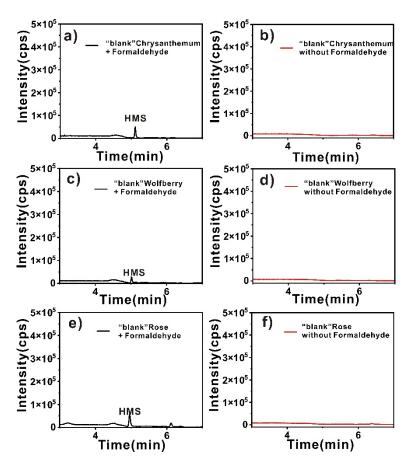


Fig. S3 UPLC-MS/MS chromatograms of sulfites from "blank" Chinese herbal tea samples with and

without formaldehyde. a) and b) "blank" chrysanthemum sample with and without formaldehyde; c) and d) "blank" wolfberry sample with and without formaldehyde; e) and f) "blank" rose sample with and without formaldehyde.

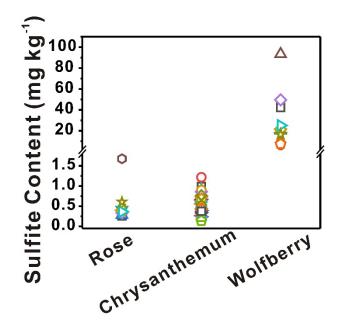


Fig. S4 The distribution of sulfite concentration in real Chinese herbal tea samples.