An ICT guided ratiometric naphthalene-benzothiazole based probe for detection of cyanide with real time application in human breast cancer cell

Shilpita Banerjee^a, Moumi Mandal^a, Satyajit Halder^b, Anirban Karak^a, Dipanjan Banik^a, Kuladip Jana^b, Ajit Kumar Mahapatra^{a*}

^aDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India ^bDivision of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata-700 054, India.

*Author to whom correspondence should be addressed; electronic mail: <u>akmahapatra@chem.iiests.ac.in;</u> Tel.: +91 – 9434508013

*Corresponding author. Fax: +91 33 26684564; Tel: +91 33 2668 4561; E-mail: mahapatra574@gmail.com (A. K. Mahapatra)

Table of Contents

Description	Page
1. Comparison table of previously reported cyanide sensors	3
2. Solid state cyanide sensing	4
3. Computational method	4
4. Live cell imaging study	5
5. Calculation of LOD	6
6. pH effect, application of the probe in tap and river water	7
7. Calculation of first order rate constant	8
8. Emission spectra of probe	9
9. Job's plot	9
10. Determination of Binding constant	10
11. NMR spectra of aldehyde, probe and product	10-11
12. Mass spectra of probe and product	12

1. Table S1 Comparison between previously reported CN⁻ sensors (based upon benzothiazole acetonitrile) with the current work

SI.	Probe structure	Solvent	Sensor type	LOD	Application	Reference
No.						
1.		THF	Turn on	3.35 ×10 ⁻⁵ M	-	Choi et al.,
			(AIE)			Spec acta
						A, 2021,
						252, 119535
2.		DMSO	Turn on	3.73nM	-	Mondal el
						al., J of
	N= N= CN					Luminescen
						ce, 2018,
						201, 419-
						426
3.		Acetonitrile	Turn off	9.44ppm	Test strips	Qu et al.,
						Sens & act
	s N					B, 2017,
	N CN					241, 1043-
						1049
4.		Acetonitrile	Ratiometric	5.52×10 ⁻⁸ M	-	Chellappa
	\bigcirc		and turn on	2.35×10 ⁻⁸ M		et al., Sens
	ń _↓ `s			9.26×10 ⁻⁸ M		& act B,
	CN					2017, 242,
						434-442
5.	\bigcirc	Acetonitrile	Turn on	4.23×10 ⁻⁸ M	-	Nagamani
	(T ^N)					et al., SN
	S S					app sc,
	N CN					2020, 2,
						1069
6.		DMSO	Ratiometric	1 ppb	Sample	Kumar et
					water, test	al., J of Mol
					strips	Structure,
						2022, 1250,

2. Solid state CN⁻ sensing:

Small piece of TLC sticks were dipped into 1×10^{-5} M probe solution followed by drying in open air. The sticks were further dipped into two different concentrated solutions of CN⁻(1 μ M, 2 μ M) and dried for 5 minutes. After that photographs were taken to examine the sensing behaviour of the probe MNBTZ.

3. Computational method:

Theoretical calculations:

Figure S1. Absorption spectra of the Probe (MNBTZ)

Energy(eV)	Wavelength (nm)	Osc. strength(f)	Transition
2.7073	457.96	0.8636	HOMO→LUMO
3.6081	379.05	0.6493	HOMO-1→LUMO
3.4677	357.54	0.1274	HOMO-2→LUMO

4. Live cell imaging study:

Cytotoxicity assay:

MTT cell proliferation assay was performed to assess the cytotoxic effect of the ligand **MNBTZ** in both the cancer cell line MDA-MB-231 and normal cell line NKE. In brief, cells were first seeded in 96-well plates at a concentration of 1×10^4 cells per well for 24 h and exposed to the different working concentration of ligand **MNBTZ** in DMSO and water ratio of 1:1(0 µM, 10 µM, 20 µM, 40 µM, 80 µM, 100 Mm) for 24 hrs. After incubation cells were washed with 1×PBS and MTT solution (0.5 mg/ml) were added to each well and incubated for 4 hour and the resulting formazan crystals were dissolved in DMSO and the absorbance was measured at 570 nm by using a microplate reader. Cell viability was expressed as a percentage of the control experimental setup.

Figure S2. Cell survivability of MDA-MB 231 and NKE cells exposed to different ligand **MNBTZ** concentration. Data are representative of at least three independent experiments and bar graph shows mean \pm SEM, **p < 0.001 were interpreted as statistically significant, as compared with the control.

5. Calculation of Limit of detection:

From the plot of fluorescence intensity ratio I_{435}/I_{567} vs concentration of CN⁻ limit of detection was calculated by using the formula LOD= k × δ /m where k= 3, δ is the standard deviation of the blank solution and m is the slope of the calibration curve.

Figure S3. Plot of fluorescence intensity ratio vs concentration of CN-

Figure S4. Calibration of the probe at an intensity ratio I_{435}/I_{567} depending on CN⁻ concentration.

LOD= 2.1 × 10⁻⁸ (M) (R²=0.98501)

6.pH effect:

Figure S5. Effect of pH on fluorescence of MNBTZ and MNBTZ+CN⁻ in DMSO/H₂O at 380nm

7. Application of the probe in tap water and river water:

Figure S6: Fluorescence intensity changes of MNBTZ (1×10^{-5} M) upon gradual addition of TBACN in **DMSO-tap water** (10μ M HEPES buffer, 1:1 v/v, pH 7.4 at 25^oC) (λ_{ex} =380nm, λ_{em} =400nm)

Figure S7: Fluorescence intensity changes of MNBTZ (1×10^{-5} M) upon gradual addition of TBACN in **DMSO-river water** (10μ M HEPES buffer, 1:1 v/v, pH 7.4 at 25^{0} C) (λ_{ex} =380nm, λ_{em} =400nm)

Table S3: Real sample study for MNBTZ

Samples	Spiked(µM)	Found (µM)	Actual	
			CN ⁻ in sample	
			water (mg/L)	
Tap water	30	30.216	0.09	
River water	30	30.448	0.187	

8. Calculation of first order rate constant (k')

First order rate constant was calculated by the following equation:

$$\ln[(F_{max}-F_t)/F_{max}] = -k't$$

Where F_t and F_{max} symbolize the fluorescence intensities at 435nm at time t and maximum value obtained upon completion of the reaction and k' is the monitored first order rate constant.

Figure S8. First order kinetic plot of probe $(1 \times 10^{-5} \text{M})$ in the presence of 2 equivalent of $1 \times 10^{-4} \text{M CN}^{-1}$ solution (λ_{ex} =380nm, λ_{em} =400nm)

First order rate constant $k' = 0.0348 \text{ s}^{-1}$

9. Emission spectra of probe

Figure S9.Fluorescence intensity changes of MNBTZ (1×10^{-5} M) upon gradual addition of TBACN in DMSO-distilled water (10μ M HEPES buffer, 1:1 v/v, pH 7.4 at 25° C) (λ_{ex} =380nm, λ_{em} =400nm)

10. Job's plot of the probe MNBTZ for CN-

Job's plots were drawn by plotting $\Delta F.X(host)$ vsXhost (ΔF = change of intensity ratio of the emission spectrum [I₄₃₅/I₅₆₇] for MNBTZ during titration and X(host) is the mole fraction of the host in each case respectively).

Figure S10. Job's plot of MNBTZ with CN⁻ using fluorescence data

11. Determination of binding constant value (Ka) using linear method for MNBTZ

Binding constant value (Ka) was calculated by plotting $1/\Delta I vs 1/[G]$ [(ΔI = change of intensity ratio of the emission spectrum[I_{435}/I_{567}] for MNBTZ during titration and [G] is the concentration of CN⁻ in each case respectively).

Figure S11. Binding constant value of MNBTZ with CN⁻ using fluorescence data

12. NMR spectra: ¹H-NMR, ¹³C-NMR

Figure S12: ¹H-NMR spectra of MNA in CDCl₃

Figure S13: ¹H-NMR spectra of MNBTZ in CDCl₃

Figure S14:¹³C-NMR spectra of MNBTZ in CDCl₃

13. ESI-MS spectra

Figure S15: ESI-MS of probe MNBTZ [M+H]

Figure S16: ESI-MS of product MNBTZ-CN [M+Na+H₂O]