Switching to a 'Turn-on' fluorescent probe for rapid detection of hydrazine in human breast cancer cell and test-strip

Anirban Karak^a, Moumi Mandal^a, Satyajit Halder^b, Shilpita Banerjee^a, Depanjan Banik^a, Anwesha Maiti^a, Kuladip Jana^b, Ajit Kumar Mahapatra^a*

^aDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India

^bDivision of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India.

*Author to whom correspondence should be addressed; electronic mail:

akmahapatra@chem.iiests.ac.in; Tel.: +91 - 9434508013

Table of Contents

S2-S3
S3-S4
S4
S5
S 6
S6-S7
S7-S8
S8-S10
S11
S11
S12
S12
S13
S13-14

Table S1 Comparison between the previously reported hydrazine probe with our newly designed probe

Structure of the probe	Solvent	Mode of sensing	Application	LOD	Response time	Ref
HNEt ₃ O ₃ S	PBS buffer	Blocked ICT	Whatman paper strips	1.79 × 10 ⁻⁹ M	40 s	1
	Tris/HCl buffer			0.253 ppb	1 h	2
	CH ₃ CN-HEPES (1:1, v/v)		filter paper- based test strips	2.673× 10 ⁻⁶ M	60 min	3
HOTOCN	DMSO/PBS buffer	Blocked ICT	real water samples, live cell imaging	0.09 μΜ	1 h	4
β	PBS-DMSO (v/v = 1/1)	-	real water samples, live cell imaging	11.9 nM	3 min	5
	DMSO/PBS buffer (4/6, v/v) m	Blocked ICT	real water samples, live cell imaging	8.47 nM	180 s	6

$\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	DMSO-HEPES (1/1, v/v)	ICT On, PET Off	live cell imaging	1.83 ppb	-	7
S NH NH NH NH	DMSO/PBS	Blocked ICT	live cell imaging	5 × 10 ⁻⁸ M	10 min	8
	DMSO/PBS buffer (9/1, v/v) m	-	real water samples, live cell imaging	40.8 nM	30 min	9
	THF-H ₂ O (4:6, v/v, 10 mM HEPES buffer, pH = 7.4)	Blocked ICT	TLC based test strip, live cell imaging	1.22 × 10 ⁻⁷ M	50 s	Our wor k

2. Absorption and emission spectral response of TPBT in the presence of hydrazine

Figure S1. Absorption spectral data of the probe **TPBT** (4.0×10^{-5} M) in aqueous THF solution (THF/H₂O = 4:6 v/v, 10mM HEPES buffer, pH = 7.4), upon gradual addition of hydrazine (4.0 $\times 10^{-4}$ M).

Figure S2. Emission spectral data of the probe **TPBT** (4.0×10^{-5} M) in aqueous THF solution (THF/H₂O =4:6 v/v, 10mM HEPES buffer, pH = 7.4) upon gradual addition of hydrazine (4.0 $\times 10^{-4}$ M), (Excitation= 380 nm).

3. Bar diagram

Figure S3. Change in emission in the selectivity study of the probe (40 μ M) in the presence of different analytes (75 μ M); where analytes are 1) Blank, 2) Cr³⁺, 3) Fe²⁺, 4) Na⁺, 5) Al³⁺, 6) Cu²⁺, 7) Hg²⁺, 8) Zn²⁺, 9) F⁻, 10) Cl⁻, 10) SCN⁻, 11) CN⁻, 12) CH₃COO⁻, 13) OCl⁻ 14) PA, 15) urea, 16) PhNHNH₂ 17) hydroxyl amine, 18) cysteine, 19) thiourea, 20) N₂H₄

4. Theoretical calculations:

Figure S4. Absorption spectra of the Product (TPBT-N₂H₄)

 $Table \,S2 \text{ The vertical main orbital transition of the } TPBT-N_2H_4 \text{ calculated by } TDDFT \text{ method}$

Energy (eV)	Wavelength (nm)	Osc. strength (f)	Transition
3.1531	393.21	0.8516	HOMO→LUMO
3.6081	343.62	0.0191	HOMO→LUMO+1
3.8266	324.00	0.2661	HOMO→LUMO+2

Figure S5. The frontier molecular orbitals of TPBT and TPBT- N_2H_4 obtained at DFT level using B3LYP/6-31G+(d, p)basis set.

5. Determination of the response time of probe toward the product

Figure S6. Time course (0–60 s) of fluorescence enhancement of **TPSBT** (10.0 μ M) in THF-H₂O solution upon addition of two different concentrations of hydrazine (λ ex = 380 nm; λ em = 511 nm).

6. Cell line study:

To envision the fluorescence ability of the ligand **TPSBT** in the presence of hydrazine fluorescence imaging was performed in cell line MDA-MB 231. Briefly, cells were grown in coverslips for 24 hrs. in a 37°C humidified incubator containing 5% CO₂ and then pre-treated the cells with 10 μ M working concentration of hydrazine for the time period of 30 min and then washed with 1×PBS to remove any unbound hydrazine present within the medium followed by 10 μ M working concentration **TPSBT** added and incubated for the time period of 15 min and 30 min in dark at 37°C and then washed with 1×PBS two times to remove any unbound **TPSBT or hydrazine** and then they were mounted on a glass slide and detected under fluorescence microscope (Olympus).

Cytotoxicity assay:

MTT cell proliferation assay^{10,11} was performed to assess the cytotoxic effect of the ligand **TPSBT** in both the cancer cell line MDA-MB-231 and normal cell line NKE. In brief, cells were first seeded in 96-well plates at a concentration of 1×10^4 cells per well for 24 h and exposed to the different working concentrations of ligand **TPSBT** (0 µM, 10 µM, 20 µM, 40 µM, 80 µM, 100 Mm) for 24 hrs. After incubation cells were washed with 1×PBS and MTT solution (0.5 mg/ml) were added to each well and incubated for 4 h and the resulting formazan crystals were dissolved in DMSO and the absorbance was measured at 570 nm by using a

microplate reader. Cell viability was expressed as a percentage of the control experimental setup.

Figure S7: Cell survivability of MDA-MB 231 and NKE cells exposed to different ligand TPSBT concentrations. Data are representative of at least three independent experiments and bar graph shows mean \pm SEM, **p < 0.001 were interpreted as statistically significant, as compared with the control.

7. ESI-MS Spectra

Figure S9: HRMS of the probe TPSBT +hydrazine adducts

Figure S10: HRMS of the controlled compound TPBT

8. NMR Spectra: ¹H NMR, ¹³C NMR

Figure S11: ¹H NMR spectrum of the Compound 2

Figure S12: ¹H NMR spectrum of the probe TPSBT in DMSO d₆

Figure S13: ¹³C NMR of the probe TPSBT in DMSO d_6

Figure S14: ¹H NMR spectrum of the probe TPSBT- N_2H_4 adduct in CDCl₃

9. Comparative fluorescence graph

Figure S15: Comparative graph of change in fluorescence of **TPSBT** in presence of hydrazine and other analytes.

10. Effect of pH

Figure S16: Effect of pH on fluorescence of TPSBT and TPSBT+ N_2H_4 in THF-H₂O at 511 nm

11. Plot of fluorescence change of TPSBT and concentration of N_2H_4

Figure S17: Plot of fluorescence change of TPSBT and concentration of N₂H₄

12. Calculation of detection Limit

The limit of detection (LOD) of TPSBT for hydrazine was calculated using the general equation LOD = $K \times \delta/m$

Where K = 2 or 3 (we take 2 in this case) and δ is the standard deviation of the blank solution and m is the slope of the calibration curve.

Figure S18: From the graph, we get slope (m) = 4.45×10^{11} , thus using the formula we obtained the detection limit of 1.22×10^{-7} M.

Samples	N ₂ H ₄ spiked (M)	N ₂ H ₄ recovered (M)	Recovery (%)
Tap water	0	not detected	—
	2 x 10 ⁻⁷	(1.97 ± 0.05) x 10 ⁻⁷	98.5
	2 x 10 ⁻⁶	(2.02 ± 0.15) x 10 ⁻⁶	101
	2 x 10 ⁻⁵	(1.94 ± 0.12) x 10 ⁻⁵	97
Ganges River water	0	not detected	—
	2 x 10 ⁻⁷	(1.91 ± 0.14) x 10 ⁻⁷	95.5
	2 x 10 ⁻⁶	(2.09 ± 0.13) x 10 ⁻⁶	104.5
	2 x 10 ⁻⁵	(1.98 ± 0.10) x 10 ⁻⁵	99
Lake water	0	not detected	—
	2 x 10 ⁻⁷	(2.08 ± 0.16) x 10 ⁻⁷	104
	2 x 10 ⁻⁶	(2.03 ± 0.11) x 10 ⁻⁶	101.5
	2 x 10 ⁻⁵	(1.99 ± 0.11) x 10 ⁻⁵	99.5

Table S3 Environmental water sample study

13. References

1. Shweta, A. Kumar, Neeraj, S. K. Asthana, A. Prakash, J. K. Roy, I. Tiwari, and K. K. Upadhyaya, *RSC Adv.*, 2016, **6**, 94959-94966.

2. L. Liu, Y. Le, M. Teng, Z. Zhou, D. Zhang, C. Zhao and J. Cao, *Dyes and Pigments*, 2018, **151**, 1-6.

3. W. D. Wang, Y. Hu, Q. Li, and S. L. Hu, Inorg. Chim. Acta, 2018, 477, 206-211.

4. C. Wu, R. Xie, X. Pang, Y. Li, Z. Zhou, and H. Li, Spectrochim. Acta - A: Mol. Biomol. Spectrosc., 2020, 243, 118764.

5. S. H. Guo, Z. Q. Guo, C. Y. Wang, Y. Shen and W. H. Zhu, *Tetrahedron*, 2019, **75**, 2642-2646.

6. X. Wang, G. Ding, Y. Wang, S. Mao, K. Wang, Z. Ge, Y. Zhang, X. Li, and C. H. Hung, *Tetrahedron*, 2020, **76**, 131726.

7. W. Xu, W. Liu, T. Zhou, Y. Yang, and W. Li, *J. Photochem. Photobiol. A: Chem.*, 2018, **356**, 610–616.

J. Du, X. Li, S. Ruan, Y. Li, F. Ren, Y. Cao, X. Wang, Y. Zhang, S. Wu and J. Li, *Analyst*, 2020, 145, 636-642.

9. H. Wu, W. Zhang, Y. Wu, N. Liu, F. Meng, Y. Xie, and L. Yan, Microchem. J., 2020, 159, 105461.

10. P. R. Twentyman and M. A Luscombel Br. J. Cancer, 1987, 56, 279-285.

S. K. Vemuri, S. Halder, R. R. Banala, H. K. Rachamalla, V. M. Devraj, C. S. Mallarpu,
U. K. Neerudu, R. Bodlapati, S. Mukherjee, S.G.P. Venkata, G. R. A.Venkata, M.
Thakkumalai, K. Jana, *Int. J. Mol. Sci.*, 2022, 23, 2150.