Electronic Supporting Information

Development of Fluorescence Sensors with Copper-based Nanoclusters via

Förster Resonance Energy Transfer and the Quenching Effect for Vanillin

Detection

Hong Zhai, Mengmeng Gao, Yunfeng Bai, Jun Qin, Qing Song, Zhixiong Liu, Haiyan Wang*,

Feng Feng*

College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical

Biosensing, Shanxi Datong University, Datong, 037009, China

* Corresponding author.

E-mail: why7135280@126.com (H. Wang)

feng-feng64@263.net (F. Feng).

Fig. S1 Optimization of synthesis conditions of CuNCs. (A) temperature (B) molar ratio (Cu²⁺:SH-β-CD:AA) (C)

time.

Fig. S2 Optimization of synthesis conditions of CuAuNCs. (A) temperature (B) molar ratio (copper ion

:chloroauric acid) (C) time.

Fig. S3 Fluorescent stability with time (a: CuNCs, b: CuAuNCs)

Fig. S4 Fluorescent stability in H₂O and 0.01 M PBS buffers (pH 7.4, 8.4) (A) CuNCs (B) CuAuNCs.

Fig. S5 Linear curve fitting of vanillin by (A) FRET system between CuNCs and NR, (B) CuAuNCs (a: Regression curves of vanillin standard series solutions, b: Spiked recovery curve of milk pretreatment solution).

Fig. S6 Fluorescence spectra. (a) CuNCs (100 μ L). (b) CuNCs (100 μ L) + NR (10⁻⁴ M). (c) NR (10⁻⁴ M, λ ex=365

nm). (d) NR (10⁻⁴ M, λ ex=450 nm). (e) β -CD (4 mM) + NR (10⁻⁴ M).

Fig. S7 UV Spectrum of NR

Fig. S8 (A) Fluorescence spectra of vanillin (2 × 10⁻⁶ M) at pH 8.4 containing (1) 0, (2) 0.8, (3) 1.0, (4) 2.0, (5) 4.0, (6) 6.0, (7) 7.0, and (8) 10 mM β-CD. (B) Fluorescence spectra of NR (1.0 × 10⁻⁵ M) at pH 8.4 containing (1) 0, (2) 0.4, (3) 0.8, (4) 1.0, (5) 2.0, (6) 4.0, (7) 6.0, (8) 7.0, and (9) 10 mM β-CD. Inset: Double reciprocal plot of M/β-CD complex, 1/(F-F₀) vs 1/[CD]₀.

Fig. S9 UV spectrum of vanillin (a) and fluorescence spectrum of CuAuNCs (b)

*	5 1			
materials	Linear ranges (µM)	LOD(µM)	Ref.	
Cd(II) coordination polymer	0~10	1.41	1	
Zr(IV)-MOF	12.5~45	0.38	2	
N-doped carbon dots (NCDs)	0.43~264	0.10	3	
Graphene quantum dots	0~10	0.025	4	
CdSe/ZnS quantum dots	13~130	6.51	5	
CuNCs	10~100	8.08	This	
CuAuNCs	50~1000	10.17	work	

Tab. S1 Comparison of various fluorescence sensors and their analytical parameters for determination of vanillin

Method	Added (µM)	Total found	Recovery (%)	
Proposed		(µM)		KSD (%)
FRET between	30	31.2	103.9	3.43
milk CuNCs and NR Quenching by CuAuNCs	80	79.8	99.7	2.15
	250	253.6	101.4	4.39
	700	719.6	102.8	0.78
	Method Proposed FRET between CuNCs and NR Quenching by CuAuNCs	MethodAdded (μM)Proposed30FRET between30CuNCs and NR80Quenching by250CuAuNCs700	Method ProposedTotal found (μM)FRET between3031.2CuNCs and NR8079.8Quenching by250253.6CuAuNCs700719.6	$\begin{tabular}{ c c c c } \hline Method & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Table S2. Determination of vanillin in real samples (n=3).

[1] Y. X. Chen, G. C. Liu, X. Lu and X. L. Wang, A water-stable new luminescent Cd(II) coordination polymer for rapid and luminescent/visible sensing of vanillin in infant formula, Inorg. Chim. Acta, 2022, 540, 121051.

[2] Y. B. Ren, H. Y. Xu, J. W. Yan, D. X. Cao and J. L. Du, Multifunctional luminescent Zr(IV)-MOF for rapid and efficient detection of vanillin, CrO_4^{2-} and $Cr_2O_7^{2-}$ ions, Spectrochim. Acta A, 2022, 278, 121390.

[3] Y. P. Wang, Q.L. Yue, Y. Y. Hu, C. Liu, L. X. Tao and C. Zhang, Synthesis of N-doped carbon dots and application in vanillin detection based on collisional quenching, RSC Adv., 2019, 9, 4022–40227.

[4] S. J. Zhu, X. X. Bai, T. Wang, Q. Shi, J. Zhu and B. Wang. One-step synthesis of fluorescent graphene quantum dots as an effective fluorescence probe for vanillin detection, RSC Adv., 2021, 11, 9121-9129.

[5] G. M. Durán, A. M. Contento, Á. Ríos. β-Cyclodextrin coated CdSe/ZnS quantum dots for vanillin sensoring in food samples, Talanta, 2015, 131: 286–291.