Electronic Supplementary Information

Iron-based metal-organic framework as novel dispersive solid-phase extraction sorbents for efficient adsorption of tetrabromobisphenol A from environment water samples

Ling-Juan Wang^a, Wei Han^b, Ting-Ting Lou^b, Lin-Lin Ma^a, Ya-Bing Xiao^b, Zhou Xu^a,

Mao-Long Chen^a, Yun-Hui Cheng^a, Li Ding^a*

a. School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China.

b. Technical Center for Animal, Plant, Foodstuffs and Industrial Product Safety,
Tianjin Customs, Tianjin 300457, China.

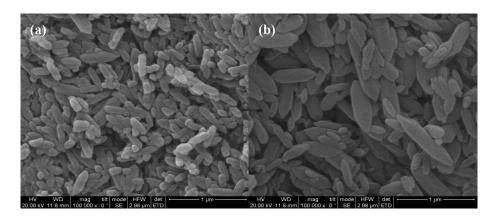
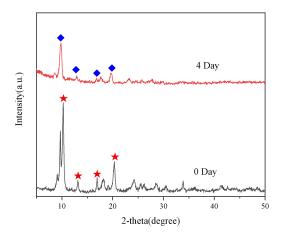



Fig. S1. The SEM image of Fe-MIL-88-NH $_2$ before(a) and after(b)

adsorption.

Fig. S2. The XRD of Fe-MIL-88-NH₂ before(a) and after(b) adsorption.

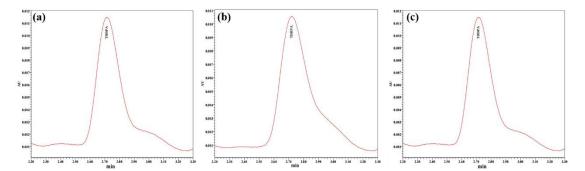


Fig. S3. The chromatogram of the real samples (a) river water, (b) lake water and (c) plastic

products factory wastewater.

Compound		Langmuir		Freundlich			
	Q max	KL	R ²	K _F	1/n	R ²	
	(mg g ⁻¹)	(mL mg ⁻¹)	$(mg^{1-1/n} L^{1/n}g^{-1})$				
TBBPA	46.05	0.17	0.95	8.27	0.39	0.91	

Table S1. Adsorption isotherm parameters of TBBPA on Fe-MIL-88-NH $_2$

Table S2. The parameters of pseudo-first-order and pseudo-second-order models for the adsorption

of TBBPA on Fe-MIL-88-NH₂.

Kinetic	pseudo-first-order kinetic model			pseudo-second-order kinetic model			
model							
	$Q_e(mg \cdot g^{-1})$	$k_1(min^{-1})$	R ²	$Q_e(mg \cdot g^{-1})$	$k_2(g \cdot (mg \cdot min)^{-1})$	R ²	
Value	63.51	0.0539	0.4157	22.75	0.0412	0.9996	