Supplementary Material

Carbon dots functionalized macroporous adsorption resin for bifunctional ultra-sensitive detection and fast removal of iron(III) ions

Chao Huang¹, Hongwei Wang¹, Yunjia Xu¹, Shujuan Ma², Bolin Gong^{1*}, Junjie Ou^{1,2,3*}

¹School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China

²CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

³ University of Chinese Academy of Sciences, Beijing 100049, China

* To whom correspondence should be addressed:

Prof. Bolin Gong Tel: +86-951-2067917 Fax: +86-951-2067917 Email address: gongbolin@163.com (B. Gong) Prof. Junjie Ou Tel: +86-411-84379576 Fax: +86-411-84379620 Email address: junjieou@dicp.ac.cn (J. Ou)

Fig. S1. TEM images of CDs with different magnification.

Fig. S2. XPS full spectra of MAR@poly(PA)@CD (a) before and (b) after adsorption of Fe³⁺.

Fig. S3. High resolution XPS spectra of (a) Fe 2p, (b) N 1s, (c) C 1s, (d) O 1s and (e) S 2p after adsorption of Fe³⁺ of MAR@poly(PA)@CD.

Fig. S4. Fluorescence responses of MAR@poly(PA)@CD toward 12 kinds of metal ions in the absence and presence of Fe³⁺.

Fig. S5. (a) Fluorescence emission spectrum containing different concentrations of Fe³⁺. (b) Linear response curve for detection of Fe³⁺ by CDs.

Specific surface area	Pore volume	Average pore diameter	
$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)	
33.4	0.160	20.3	
13.6	0.090	23.6	
	Specific surface area (m ² g ⁻¹) 33.4 13.6	Specific surface area Pore volume (m ² g ⁻¹) (cm ³ g ⁻¹) 33.4 0.160 13.6 0.090	

Table S1 Comparison of specific surface area, pore volume and average porediameter of poly(GMA-co-EDMA) and MAR@poly(PA)@CD.

Langmuir isotherm model			Freundlich isotherm model			
$Q_{\max} (\mathrm{mg g}^{-1})$	$K_{\rm L}$ (L g ⁻¹)	r _L	$K_{\rm F}$ (mg g ⁻¹)	1/ <i>n</i>	<i>r</i> _F	
24.15	3.451	0.9992	15.71	0.2549	0.9398	

Table S2 Isothermal adsorption fitting parameters of MAR@poly(PA)@CD to Fe³⁺by Langmuir and Freundlich models.

		pseudo-first-order		pseudo-second-order			
C ₀ (μmol L ⁻¹)	\mathcal{Q}_{e} (mg g ⁻¹)	k_1 (min ⁻¹)	$Q_{1 ext{ cal}}$ (mg g ⁻¹)	r_1	k_2 (g mg ⁻¹ min ⁻¹)	$Q_{2 ext{ cal}}$ (mg g ⁻¹)	<i>r</i> ₂
200.0	20.20	0.0382	8.492	0.7628	0.003658	22.68	0.9902

Table S3 Kinetic adsorption fitting parameters of MAR@poly(PA)@CD to Fe³⁺ bypseudo-first-order and pseudo-second-order models.