1 Supporting Information

Graphene oxide-mediated fluorescence turn-ON GO-FAM-FRET aptasensor for detection of sterigmatocystin

- 4 Pravin Savata Gade, ^{a b} Rutuja Murlidhar Sonkar ^{a b} and Praveena Bhatt^{* a b}

8 Table S1: Primers and oligos used in the present study

Name	Sequence	
Forward	CTCGTCTCGTTCTCAGTC	
primer		1
Reverse	тсстссттсттсататс	
Primer		

1	1
T	T

1 Flow cytometry analysis:

2

19

Figure S1: Flow cytometry binding analysis of the FAM labelled aptamer and STC. Forward and side
 scattering of the STC (A), MSA-C6 (B) and complex (C). The fluorescence in the green region vs side
 scattering of STC (D), MSA-C6 (E) and complex (F).

5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	

1 Secondary structure prediction:

Figure S2: Secondary structure prediction. Five sequences were obtained after cloning and sequencing, Homology was performed and secondary structure was predicted using the UNAfold server.

- 6
- 7
- 8

Table S2: Comparison of different sensors developed for Sterigmatocystin.

Sr	Analytical technique	LOD	Source	References	
No					
1	Liquid chromatography (UPLC) coupled with triple quadrupole tandem mass spectrometry (MS/MS).	0.10 µg/kg	Roasted coffee beans & black pepper	2	
2	LC-MS/MS method using an immunoaffinity column	0.02 µg/kg	wheat flour, Job's tears products, rice etc	3	
3	Competitive enzyme-linked immuno- sorbent assay (ELISA)	3 μg/kg	Wheat, rice & maize	4	
4	Gas chromatography-mass spectrometry	2.4 μg/kg	Wheat, maize & rice	5	
5	HPLC-UV	0.26 μg/L	Beer	6	
6	Fluorescence sensor based on carbon dots-embedded molecularly imprinted polymer	0.019 mg/L	Millet, Rice and Maize	7	
7	Fluorescence sensor based on Molecularly Imprinted Fluorescent Polymers	0.013 mg/L	Rice, Maize and Soybeans	8	
8	GO-FAM-FRET fluorescence turn- ON aptasensor	23.56 ng/mL	Chilli & Pepper	Present study	

- 1 Figure S3: Characterisation of GO and GO coated surface by SEM. (a-d) SEM images of GO at different
- 2 resolutions and **(e-h)** SEM images of GO coated surface at a different resolution.

- 4 Figure S4: Characterisation of GO and GO-coated surface by EDAX. (A) EDAX analysis of GO and (B)
- 5 EDAX analysis of GO-coated surface.
- 6
- 7
- $8 \qquad$ GO coating concentration optimization for F-MSA-C6

- 10 **Figure S5:** The GO concentration optimization to coat the PP surface to efficiently adsorb F-MSA-C6.
- 11

9

1 Assay Validation and cross-validation:

3 Figure S6: Assay validation and cross-validation. (a and b) calibration curve of STC HPLC analysis (n=2).

- 4
- 5

6 Table S3: Precision studies in simulated contaminated samples using developed GO-FAM-FRET
 7 aptasensor.

STC concentration		Intraday			Interday		
(ppb)		Mean *	SD	CV (%)	Mean *	SD	CV (%)
Penner	32.42	34.1	1.41	1.99	32.6	1.78	3.15
герреі	324.3	323	2.83	7.98	329	4.51	20.3
Chili	32.42	34.3	1.36	1.84	35.4	2.01	4.03
Chin	324.3	329	2.06	4.23	333	2.08	9.49

- 8 * Mean of three replicates
- 9

10

1 References

- K. Setlem, B. Mondal, S. Ramlal and J. Kingston, *Frontiers in Microbiology*, 2016, 7,
 1–14.
- S. W. C. Chung and A. H. T. Wu, Food Additives and Contaminants Part A *Chemistry, Analysis, Control, Exposure and Risk Assessment*, 2020, 37, 355–362.
- T. Yoshinari, H. Takeuchi, M. Kosugi, M. Taniguchi, M. Waki, S. Hashiguchi, T.
 Fujiyoshi, Y. Shichinohe, M. Nakajima, T. Ohnishi, Y. Hara-Kudo and Y. SugitaKonishi, Food Additives and Contaminants Part A Chemistry, Analysis, Control,
 Exposure and Risk Assessment, 2019, 36, 1404–1410.
- M. Oplatowska-Stachowiak, C. Reiring, N. Sajic, W. Haasnoot, C. Brabet, K.
 Campbell, C. T. Elliott and M. Salden, *Analytical and Bioanalytical Chemistry*, 2018, 410, 3017–3023.
- 13 5 M. Z. Hossain and T. Goto, *Mycotoxin Research*, 2015, **31**, 17–22.
- A. Veršilovskis, S. De Saeger and V. Mikelsone, *World Mycotoxin Journal*, 2008, 1,
 161–166.
- 16 7 L. Xu, G. Fang, M. Pan, X. Wang and S. Wang, *Biosensors and Bioelectronics*, 2016,
 17 77, 950–956.
- 18 8 J. M. Liu, F. Z. Cao, G. Z. Fang and S. Wang, *Polymers (Basel)*, ,
 19 DOI:10.3390/polym9070299.
- 20