Supplementary Data

Exonuclease III- amplified 4-way strand migration system for low-

abundance deletion mutation

Xiaofeng Tang^{1, 2‡}, Qiaolin Li^{3‡}, Juan Wang^{4‡}, Shanling Liu^{1, 2*}

¹ Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan,610041, China

² Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China

³ Department of Hepatobiliary Surgery, The First Affiliated Hospital, Yangtze University, Jingzhou, 434023, China

⁴ Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia, 750001, China.

[‡] The authors contributed equally

*To whom correspondence should be addressed. Shanling Liu, Email: sunny630@126.com;

Table of contents

- SI 1 Supplementary Materials
 - 1. 1 Sequences of oligonucleotides used in this work
- SI 2 Supplementary Notes
- 2.1 Optimize the buffer for Exonuclease III
- 2.2 Optimize the concentration for Exonuclease III
- 2.3 Deletion mutation specific primer for sanger sequencing
- SI 3 Supplementary Figures
- 3.1 The optimization of Exo III buffer
- 3.2 The optimization of Blocker.
- 3.3 The optimization of Exo III concentration
- 3.4 The linear fitting of the rate and mutation abundance
- 3.5 The free energy of and the conversion of eight types of deletion length
- 3.6 The free energy of and the conversion of eight types of deletion length
- 3.7 The sanger sequencing with Deletion specific primer

SI 1 Supplementary Materials

1. 1 Sequences of oligonucleotides used in this work.

Table S1. The core DNA sequences of used in detecting EGFR exon 19 del

Strand Name	Sequence (5'-3')			
WT-EGFR-15nt	TTAAA ATTCCCGTCGCTATC AAG GAA TTA AGA GAA GCA			
	ACATCTCCGAAAGCC AACAA			
MT-EGFR-15nt	TTAAA ATTCCCGTCGCTATCAAGACATCTCCGAAAGCC AACAA			
D-Probe-FAM-EGFR-15nt	AAGACATCTCCGAAAGCC AACAA			
D-Probe-BHQ- EGFR-15nt	GGCTTTCGGAGA TGT CTTGATAGCGACGGGAAT			
Blocker- EGFR-15nt	TGT TGC TTC TCT TAA TTC CTT			
PCR-WT- EGFR-15nt	GACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAGGAATT			
	AAGAGAAGCAACATCTCCGAAAGCCAACAAGGAAATCCTCGATGTGAGTTTCTG			
	CTTT			
PCR-MT-EGFR-15nt	GACTCTGGATCCCAGAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAAACATC			
	TCCGAAAGCCAACAAGGAAATCCTCGATGTGAGTTTCTGCTTT			
PCR-FP- EGFR-15nt	GACTCTGGATCCCAGAAG			
PCR-RP- EGFR-15nt	AAAGCAGAAACTCACATCGA			
Specific-RP- EGFR-15nt	GGCTTTCGGAGATGTTTTG			
Plasmid- EGFR-15nt	pUC57			

Table S2. The core DNA sequences of used in detecting PBRM1 c.3923-3930del

Strand Name	Sequence(5'-3')	
WT- PBRM1-8nt	TTCACCCAGAAGAAACAGAGCATGAGCCCACAAAAATGTTCTACAAAAAAGAAG	
	ТАТТТ	
MT-PBRM1-8nt	TTCACCCAGAAGAAACAGAGCATGAAAATGTTCTACAAAAAAGAAGTATTT	
D-Probe-FAM- PBRM1-8nt	GCATGAAAATGTTCTACAA	
D-Probe-BHQ- PBRM1-8nt	AGAACATTTTCATGCTCTGTTTCTT	
Blocker-1- PBRM1-8nt	AGAACATTTTTGTGGGCTGTAC	
Blocker-2- PBRM1-8nt	AGAACATTTTTGTGGGCT	
Blocker-3- PBRM1-8nt	AGAACATTTTTGTGGGGCTCATGGTAC	

PCR-WT- PBRM1-8nt	GCCCCATCTTCATTCACCCAGAAGAAACAGAGCATGAGCCCACAAAAATGTTCTA
	CAAAAAAGAAGTATTTCTGAGTAATCTGGAAGAAACCTGCCCCATGA
PCR-MT- PBRM1-8nt	GGCCCCATCTTCATTCACCCAGAAGAAACAGAGCATGAAAATGTTCTACAAAAA
	AGAAGTATTTCTGAGTAATCTGGAAGAAACCTGCCCC
PCR-FP- PBRM1-8nt	CCCCATCTTCATTCACCCAGA
PCR-RP- PBRM1-8nt	GGGGCAGGTTTCTTCCAGAT

 Table S3. The core DNA sequences of used in detecting EGFR c.2127-2129del

Strand Name	Sequence(5'-3')		
WT- EGFR-3nt	AGCTCTCTTGAGGATCTTGAAGGAAACTGAATTCAAAAAGATCAAAGTGCTGGG		
	CTCCG		
MT- EGFR-3nt	AGCTCTCTTGAGGATCTTGAAGGATGAATTCAAAAAGATCAAAGTGCTGGGCTCC		
D-Probe-FAM- EGFR-3nt	G		
D-Probe-BHQ- EGFR-3nt	AGGATGAATTCAAAAAGATC		
	TTTTTGAATTCATCCTTCAAGATCCT		
Blocker-1-EGFR-3nt	GAATTCAGTTTCCTTCATCTA		
Blocker-2- EGFR-3nt	TGAATTCAGTTTCCTTCAATCTA		
Blocker-3 EGFR-3nt	TTGAATTCAGTTTCCTTCAAGTCTA		

 Table S4. The core DNA sequences of used in detecting different length of deletion mutation of PBRM1

Strand Name	Sequence(5'-3')
MT- PBRM1-8nt	TTCACCCAGAAGAAACAGAGCATGAAAATGTTCTACAAAAAAGAAGTATTT
D-Probe-FAM- PBRM1-8nt	GCATGAAAATGTTCTACAA
D-Probe-BHQ- PBRM1-8nt	AGAACATTTTCATGCTCTGTTTCTT
WT- PBRM1-8nt	TTCACCCAGAAGAAACAGAGCATGAGCCCACAAAAATGTTCTACAAAAAAGAAG
WT-PBRM1-7nt	TATTT
WT- PBRM1-6nt	CAGAAGAAACAGAGCATGGCCCACAAAAATGTTCTACAAA
WT- PBRM1-5nt	CAGAAGAAACAGAGCATGCCCACAAAAATGTTCTACAAA
WT- PBRM1-4nt	CAGAAGAAACAGAGCATGCCACAAAAATGTTCTACAAA
WT- PBRM1-3nt	CAGAAGAAACAGAGCATGCACAAAAATGTTCTACAAA
WT- PBRM1-2nt	CAGAAGAAACAGAGCATGACAAAAATGTTCTACAAA

WT-PBRM1-1nt	CAGAAGAAACAGAGCATGCAAAAATGTTCTACAAA			
	CAGAAGAAACAGAGCATGAAAAATGTTCTACAAA			
Blocker- PBRM1-8nt-4	AGAACATTTTTGTGGGCTCATGCTCTGTGTAC			
Blocker- PBRM1-7nt	AGAACATTTTTGTGGGCCATGCTCTGTGTAC			
Blocker- PBRM1-6nt	AGAACATTTTTGTGGGCATGCTCTGTGTAC			
Blocker- PBRM1-5nt	AGAACATTTTTGTGGCATGCTCTGTGTAC			
Blocker- PBRM1-4nt	AGAACATTTTTGTGCATGCTCTGTGTAC			
Blocker- PBRM1-3nt	AGAACATTTTTGTCATGCTCTGTGTAC			
Blocker- PBRM1-2nt	AGAACATTTTTGCATGCTCTGTGTAC			
Blocker- PBRM1-1nt-1	AGAACATTTTTCATGCTCTGTGTAC			
Blocker- PBRM1-1nt-2	TAGAACATTTTTCATGCTCTGTTGTAC			

SI 2 Supplementary Notes

2.1 Optimize the buffer for Exonuclease III

According to the instruction of Exonuclease III (Exo III), 1X Exo III buffer (10mM Bis-tris (pH 7.0),10mM MgCl2,1mM DTT) was different from 1X ThermoPol buffer. ThermoPol buffer was usually used in nucleic acid detection research. So, we compared Exo III buffer with ThermoPol buffer in Exo III-assisted toehold probe system. The mutation abundance of 10% and 0% were detected by the system with two buffer separately. The results were shown in Fig. S1. ThermoPol buffer was better for detecting by Exo III-assisted toehold probe system.

2.2 Optimize the concentration for Exonuclease III

According to the principle of the detection method, we needed to optimize the concentration of Exo III. Exo III was diluted by 60, 80,100, and 120 times, and other experimental condition were fixed as the before. In order to obtain the optimal concentration, 10% group and 1% group were used to determine the effect of amplification.0% group was used to analyze the background signal. The results were shown in Fig. S2 a, b, c. Exo III diluted by 100 times was the optimal concentration.

2.3 Deletion mutation specific primer for sanger sequencing

In order to verify the results of the PCR products detected by Exo III-assisted toehold probe system were better than sanger sequencing. In addition to the conventional primer-mediated sanger sequencing which can detect MT and WT, we also sequenced the PCR products by deletion mutation specific primer which can detect MT and cannot detect WT. The sequencing results deletion mutation specific primers were shown in Fig S3. No matter sanger sequencing with conventional primer or deletion mutation specific primers, the low mutation abundances (1%-0%) cannot be distinguished.

SI 3 Supplementary Figures.

3.1The optimization of Exo III buffer

Fig. S1. a) Mutation abundance of 10%, 0% and D-Probe were detected by the system with Exo III buffer. b) Mutation abundance of 10%, 0% and D-Probe were detected by the system with ThermoPol buffer 1. Experiments were detected at 37 °C by BioTek, and the gain value was 60. The concentration of Blocker was 1000 nM and the other contents were 300 nM. The dilution ratio of Exo III was 100.

3. 2 The optimization of Blocker.

Fig. S2. a) The florescence intensity of PBRM1-8-nt del and the gain value was 120. b) The florescence intensity of EGFR-3-nt del and the gain value was 170. Experiments were detected at 37 °C by Tecan. The concentration of Blocker was 1000 nM and the other contents were 300 nM. The dilution ratio of Exo III was 100.

3.3 The optimization of Exo III concentrtion.

Fig.S3 a, b, c The florescence intensity of PBRM1-8-nt with the dilution ratio of 20,40,60. Experiments were detected at 37 °C by Tecan and the gain value was 170. The concentration of Blocker was 1000 nM and the other contents were 300 nM.

3.4 The linear fitting of the rate and mutation abundance

Fig. S4 The linear fitting of EFGR-15-nt del(a), PBRM1-8-nt del(b) and EGFR-3-nt-del(c).

2 5	Thefree		f and the		of sight	4	d al ati an	low oth
5.5	I ne iree	energy o	n and the	conversion	oreigni	LVDES OF	aeielion	iengin
					· · · · · · ·			

Length of deletion sequence	$\Delta G_{(MT)}$	$\Delta G_{(WT)}$	Combination of WT and Blocker
8	- 5.00101	17.2057	100%
7	- 5.00354	16.9837	100%
6	- 5.17622	16.4317	100%
5	- 5.4981	15.6884	100%
4	- 6.5819	15.1364	100%
3	- 6.7255	14.4164	99%
2	- 6.7098	14.2694	99%
_1	- 7.6753	9.69117	82%

Fig. S5 The free energy difference of MT and WT and binding ratio of Blocker and

3.6 The sanger sequencing results with ordinary primer

Fig. S6 The result of sanger sequencing with ordinary primer.

3.7 The sanger sequencing results with deletion specific primer

Fig. S7 The result of sanger sequencing with deletion specific primer.

WT.