Electronic Supplementary Information

Orange-fluorescence carbon dots employed for the quantitative analysis of silver ion and glyphosine through the off-on mode

Lu Zhao^a, Yunfeng Bai^a, Yaqiong Wen^{a,*}, Xiaoming Yang^{b,*}

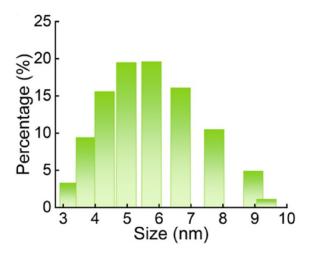
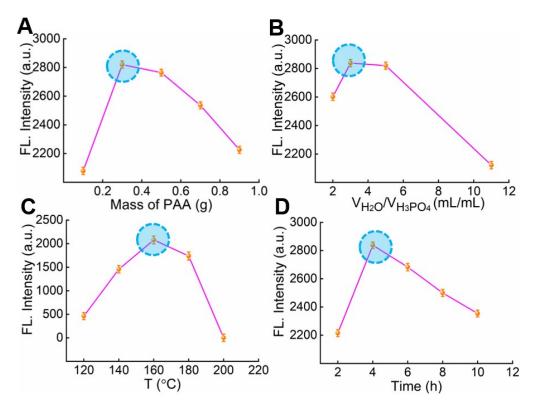
^aCollege of Chemistry and Chemical Engineering, Shanxi Datong University, Datong

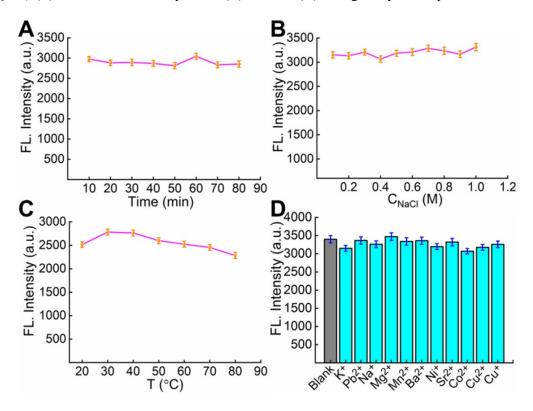
037009, China

^bCollege of Pharmaceutical Sciences, Southwest University, Chongqing 400715,

China

1. Figures:


Figure S1. DLS analysis of CDs.

^{*} Corresponding authors. E-mail: B070587@163.com

^{*} Corresponding authors. E-mail: ming4444@swu.edu.cn

Figure S2. Fluorescence intensity of CDs with different mass of PAA (A), varying ratio of H_2O_2 to H_3PO_4 , (B), various reaction temperature (C) and time (D) during the synthesis procedure.

Figure S3. Fluorescence intensity of the CDs prepared here towards different time (A), diverse concentrations of NaCl, (B), varying temperature (C) and ions (D).

2. Tables:

Table S1. Application of CDs detecting silver ion

Samples	Spiked	Found	Recovery	RSD (n=3, %)
	(10 ⁻⁵ M)	(10^{-5} M)	ratio %	
1	1.00	1.072	107.20	4.6
2	1.00	0.953	95.30	4.2
3	1.00	0.937	93.70	5.0

Table S2. Application of CDs detecting glyphosine

Samples	Spiked	Found	Recovery	RSD (n=3, %)
	(10^{-5} M)	(10^{-5} M)	ratio%	
1	1.00	1.123	112.30	4.2
2	1.00	1.045	104.50	3.9
3	1.00	0.966	96.60	4.7