Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2022

A rhodamine based chemodosimeter for the detection of Group 13 metal ions

Sneha Ghosh and Partha Roy*

Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India E-mail address: partha.roy@jadavpuruniversity.in (P. Roy)

Experimental Section

Material & physical measurements

Rhodamine 6G, trans cinnamaldehyde, nitrates of Al^{3+} , Cr^{3+} , Ga^{3+} , In^{3+} , Fe^{3+} , Tl^{3+} , Zn^{2+} , Ni^{2+} , Hg^{2+} , Cu^{2+} , Cd²⁺, etc. were procured from Sigma Aldrich and used as received. All other reagents for synthesis or measurements were obtained from commercial sources and used them as received. N-(rhodamine-6G)lactam-ethylenediamine (L₁) has been synthesized following a published method [S1]. Solvents for obtaining different spectra were purified and dried by following published methods before use [S2]. FT-IR spectra of HL-CIN and HL-CIN with different Group 13 metal ions were recorded by ATR technique on a Perkin Elmer spectrometer (Spectrum Two). Elemental analysis of the probe and its metal complexes was performed on a 2400 Perkin Elmer Series-II CHN analyzer.¹H and ¹³C NMR spectra of HL-CIN and HL-CIN with different Group 13 metal ions were obtained on a Bruker 300 MHz spectrometer with tetramethylsilane ($\delta = 0$) as the internal standard. The ESI-MS spectra of HL-CIN and HL-CIN with different Group 13 metal ions were recorded in methanol on Qtof Micro YA263 mass spectrometer. Absorption spectra of HL-CIN and HL-CIN with different Group 13and other relevant metal ions were obtained with a Shimadzu UV 1900 spectrophotometer whereas the corresponding emission spectra were measured on a Horiba Duetta Fluorescence and Absorbance Spectrometer. Luminescence lifetime measurements of HL-CIN and HL-CIN with different Group 13 metal ions were performed using a TCSPC setup from Horiba Jobin Yvon. The luminescence decay data collection was done on a Hamamatsu MCP photomultiplier (R3809) and the data were processed using the IBH DAS6 software.

Emission quantum yields (Φ) of HL-CIN and HL-CIN with different Group 13 metal ions were determined by using the following formula:

 $\Phi_{sample} = [(OD_{standard} \times A_{sample} \times \eta^2_{sample}) / (OD_{sample} \times A_{standard} \times \eta^2_{standard})] \times \Phi_{standard}$

where OD is the optical density of HL-CIN and HL-CIN with different Group 13 metal ions at the excitation wavelength i.e. 495 nm, A represents the area under the fluorescence emission curve, and η is the refractive index of the media in which spectra were recorded. Rhodamine- 6G is considered as the standard to determine the quantum yields (quantum yield of Rhodamine- 6G is 0.94 in ethanol) [S3].

Fluorescence and UV-vis spectral experiments

The absorption and fluorescence spectra of *HL-CIN* were obtained in absence and in the presence of different metal ions in 10 mM HEPES buffer in H₂O/ethanol = 1:9 (v/v) (pH 7.4) at room temperature. Generally, nitrate salts of different metal ions were used in the spectral measurements where concentration of the probe was fixed as 40 μ M and concentrations of different metal ions were varied. Excitation wavelength for fluorescence measurement was 495 nm.

Fig. S1 Absorption spectra of HL-CIN (40 μ M) in the presence of 40 μ M of different metal ions in 10 mM HEPES buffer in H₂O/ethanol = 1:9 (v/v; pH = 7.4) at room temperature.

Fig. S2 Excited state fluorescence decay behavior of HL-CIN and HL-CIN in the presence of AI^{3+} , Ga^{3+} , In^{3+} and TI^{3+} in 10 mM HEPES buffer in H₂O/CH₃OH = 1:9 (v/v; pH = 7.4) at room temperature.

Determination of LOD of HL-CIN for Al³⁺, Ga³⁺, In³⁺ and Tl³⁺

Limit of detection (LOD) for HL-CIN has been determined by 3σ method [S4] by following equation:

LOD = K*Sb1/S

where K = 2 or 3 (3 in this case); here Sb1 is the standard deviation of the blank solution; and S is the slope of the calibration curve obtained from Linear dynamic plot of Fluorescence Intensity vs [metal ion] M.

Fig. S3 Determination of Sb1 of the blank, HL-CIN solution.

Fig. S4 Linear dynamic plot of Fluorescence Intensity vs. $[Al^{3+}]$ for the determination of S (slope); [HL-CIN] = 40 μ M

Fig. S5 Linear dynamic plot of Fluorescence Intensity vs. $[Ga^{3+}]$ for the determination of S (slope); [HL-CIN] = 40 μ M

Fig. S6 Linear dynamic plot of Fluorescence Intensity vs. $[In^{3+}]$ for the determination of S (slope); [HL-CIN] = 40 μ M

Fig. S7 Linear dynamic plot of Fluorescence Intensity vs. $[TI^{3+}]$ for the determination of S (slope); [HL-CIN] = 40 μ M

Fig. S8 Fluorescence intensity of HL-CIN (40 μ M) and HL-CIN in the presence of one equivalent of Al³⁺, Ga³⁺, In³⁺ and Tl³⁺ at different pH.

Fig. S9 ESI mass spectrum of HL-CIN in methanol.

Fig. S10 ESI mass spectrum of HL-CIN in the presence of Al³⁺ in methanol.

Fig. S11 FT-IR spectrum of HL-CIN.

Fig. S12 FT-IR spectrum of HL-CIN in the presence of Al³⁺.

Fig. S13 ¹H NMR spectra of *trans* cinnamaldehyde in DMSO-d₆.

Fig. S14 ¹H NMR spectra of L₁ in DMSO-d₆.

Fig. S15 ¹H NMR spectra of HL-CIN in the presence of Ga³⁺ in DMSO-d₆.

Fig. S16 1 H NMR spectra of HL-CIN in the presence of In $^{3+}$ in DMSO-d₆.

Fig. S17 ¹H NMR spectra of HL-CIN in the presence of TI³⁺ in DMSO-d₆.

Fig. S18 ¹³C NMR spectrum of f HL-CIN in DMSO-d₆.

Fig. S20 ¹³C NMR spectrum of L₁ in DMSO-d₆.

Fig. S21 ¹³C NMR spectrum of *trans* cinnamaldehyde in DMSO-d₆.

Fig. S22 ¹H NMR spectra of (A) HL-CIN and (B) HL-CIN in the presence of Al^{3+} showing the aromatic region in DMSO-d₆.

Fig. S23 Absorption spectra of HL-CIN (40 μ M) in the presence of 40 μ M of Al³⁺ ions in in ethanol and acetonitrile at room temperature.

Fig. S24 Absorption spectra of HL-CIN (40 μ M) in the presence of one equivalent Al³⁺ in 10 mM HEPES buffer in H₂O/CH₃OH = 1:9 (v/v; pH = 7.4) at room temperature in various time intervals.

Fig. S25 Fluorescence spectra of L_1 in the presence of AI^{3+} , Ga^{3+} , In^{3+} and TI^{3+} ions. Fluorescence spectrum of HL-CIN is given as a reference for comparison in changes in fluorescence intensity under the same experimental conditions.

Fig. S26 Color of HL-CIN and HL-CIN in the presence of one equivalent of Group 13 metal ions in river water:ethanol (1:9, v/v) under visible light (upper row) and UV radiation (lower row).

Fig. S27 Color of HL-CIN in and HL-CIN with saloon waste water under visible light (upper row, (A)) and UV radiation (lower row, (B)).

Entry	Probes	Excitation	LOD	Binding	Sensor for	Hydrolysis	Ref.
no.		(nm)/		constant (K _a)		of occur?	
		Emission		(M^{-1})			
		(nm)					
1		400/592	1.84 μM	4.39×10 ⁴	Al ³⁺	No	43
2		525/585	3.52 nM		Ga ³⁺ and Hg ²⁺	Yes	44
3		510/580	1.60 ×10 ⁻⁷ M	6.9×10 ⁴	Al ³⁺	No	45
4		520/573	9.7 ×10 ^{−8} M		Hg ²⁺	Yes	46

5		554/583	11 nM (Al ³⁺)	$4.5 \times 10^4 (\text{Al}^{3+})$	Al ³⁺ and Hg ²⁺	No	47
					2.		
6	γ N N O_2N NO_2	560/588	1.51 μM		Au ³⁺	Yes	48
7	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	525/580	3.15 ×10 ^{−7} M		Au ³⁺	No	49
8		500/594	8.5 nM		Hg ²⁺	Yes	50

9		500/550	$1.10 \times 10^{-8} \text{ M} (\text{Al}^{3+})$	$9.38 \times 10^{3} (Al^{3+})$	Al ³⁺	No	35
		(Al^{3+})	$7.69 \times 10^{-8} \text{ M} (\text{Zn}^{2+})$	$4.75 \times 10^4 (Zn^{2+})$	And Zn ²⁺		
	но	370/457					
		(Zn^{2+})					
10	но 1	500/550	6.97 nM (Al ³⁺)	$1.47 \times 10^5 (\text{Al}^{3+})$	Al^{3+}, Cr^{3+}	No	36
			15.80nM (Cr ³⁺)	$6.24 \times 10^4 (\text{Cr}^{3+})$	and Fe ³⁺		
			14.00 nM (Fe ³⁺)	$8.74 \times 10^4 (\text{Fe}^{3+})$			
	N N						
11	HO	/559 (Al ³⁺)	$5.72 \times 10^{-7} \text{ M} (\text{Al}^{3+})$	$1.4 \times 10^4 (\text{Al}^{3+})$	Al ³⁺ and	No	51
					Cu ²⁺		
12		500/550 (for	$1.83 \times 10^{-7} \text{ M} (\Lambda 1^{3+})$	$9.02 \times 10^4 (\Lambda 1^{3+})$	$\Lambda 1^{3+}$ and	No	52
12	o (A1 ³⁺⁾	1.65×10 M (AI)	9.02×10 (AI)	$7n^{2+}$	NO	52
		AI			2.11		
1	H H						

13	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	500/582	1.10 ×10 ^{−7} M	7.033×10 ³	Al ³⁺	No	53
14		535/576	1.2×10 ⁻⁸ M	-	Hg ²⁺	No	54
15	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	500/550	6.54nM(Al ³⁺) 16.0 nM(Hg ²⁺)	4.44×10 ⁴ (Al ³⁺) 4.51×10 ⁴ (Hg ²⁺)	Al ³⁺ and Hg ²⁺	No	37
16.		495/555	$2.66 \times 10^{-8} \text{ M (Al}^{3+})$ $10.4 \times 10^{-8} \text{ M (Ga}^{3+})$ $8.19 \times 10^{-8} \text{ M (In}^{3+})$ $3.10 \times 10^{-8} \text{ M (Tl}^{3+})$	$5.01 \times 10^{4} (\text{Al}^{3+})$ $4.79 \times 10^{4} (\text{Ga}^{3+})$ $4.57 \times 10^{4} (\text{In}^{3+})$ $5.75 \times 10^{4} (\text{Tl}^{3+}),$	Al ³⁺ , Ga ³⁺ , In ³⁺ and Tl ³⁺	No	13
17		495/558	2.8×10 ⁻⁸ M (Al ³⁺) 2.9×10 ⁻⁸ M (Ga ³⁺) 5.6×10 ⁻⁸ M (In ³⁺) 8.2×10 ⁻⁸ M (Tl ³⁺)		Al ³⁺ , Ga ³⁺ , In ³⁺ and Tl ³⁺	Yes	Present study

References

- S1 J.-S. Wu, I.-C. Hwang, K. S. Kim, J. S. Kim Org. Lett. 9 (2007) 907.
- S2 D. D. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, UK, 1980.
- S3 A. M. Brouwer, Pure Appl. Chem. 83 (2011) 2213.
- S4 V. Thomsen, D. Schatzlein, D. Mercuro, Spectroscopy 18 (2003) 112.