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1. Experimental: Table of Honey Samples 

Table S1: Primary saccharide content of un-adulterated honey and adulterants determined by 
benchtop NMR. H2O contents of honeys A-K were determined gravimetrically.

Primary sugars (%)
Sample Maltose Glucose Sucrose Fructose H2O (wt%)

A 4 39 1 56 16.3
B 4 37 1 58 15.1
C 4 38 0 57 14.8
D 3 38 0 60 15.1
E 3 34 0 64 14.7
F 2 36 0 62 14.8
G 3 34 1 62 -
H 2 35 3 61 13.4
I 2 38 0 60 16.7
J 2 32 2 64 13.6
K 1 34 0 64 16
L 6.22 36.4 0 57.4 -
M 5.58 37.7 0 56.7 -
N 4.88 34.8 0 60.3 -
O 6.67 31.3 0 62 -
P 3.69 36.3 0 60 -
Q 5.49 38.1 0 56.4 -
R 7.54 37.5 0 55 -
S 5.63 34.2 0 60.2 -
T 5.76 37 0 57.2 -
U 5.55 35.3 0 59.2 -
V 5.83 37.3 0 56.9 -
W 5.78 34 0 60.2 -
X 4.46 36.4 0 59.2 -
Y 5.11 32.9 0 62 -
Z 6.61 34.9 0 58.4 -

Brown Rice Syrup (Batch 1) 31.9 54.9 5.07 8.05 -
Brown Rice Syrup (Batch 2) 21 49.7 9.26 20.1 -

Corn Syrup 49 12.5 15.1 23.4 -
Glucose Syrup 22.5 36.4 20.5 20.5 -

Sugar Cane Syrup 0 27.7 34.3 38 -
Wheat Syrup 25.9 41.2 26.6 6.25 -



2. Experimental: Spectral Analysis 

We treat each NMR spectrum  as a superposition of  signatures  related to chemical species present 𝑥 𝐾 𝑢𝑘

in the sample, and weighted by their corresponding amounts, : 𝑐𝑘

𝑥 =
𝐾

∑
𝑘 = 1

𝑐𝑘𝑢𝑘(𝜃𝑘).#(𝑆1)

The sets of model parameters  determine the appearance of each reference signal; they are unique for 𝜃𝑘

each compound and may include, for example, chemical shifts, relative peak intensities and widths, as 

well as J-coupling constants, if relevant. In general, the resulting model  is a complex-valued vector of 𝑥

length N. Although we work in the frequency domain here, the generalized formulation of Eq. S1 can 

also be applied to modelling FID signals directly in the time domain 1, 2.

Given an experimental NMR signal , we aim to estimate a suitable set of parameters by fitting the model 𝑦

to the data in the least-squares sense:

 
min

{𝜃𝑘} 𝐾
𝑘 = 1,𝜑,𝑐

‖𝜑(𝑦) ‒ 𝑍𝑐‖,#(𝑆2)

where, in the compact matrix notation,  is a model matrix with columns   for  𝑍 ∈ 𝐶𝑁 × 𝐾 𝑍:,𝑘 = 𝑢𝑘(𝜃𝑘) 𝑘 =

1,…, , …,  is a column vector of intensities, and  denotes the Euclidean norm. The 𝐾 𝑐 = [𝑐1, 𝑐𝑘]𝑇
‖ ∙  ‖

function  in the above equation denotes phasing and baseline correction applied to the experimental 𝜑

spectrum. Thus, each  eventually forms a column of  and represents an elemental quantified entity, 𝑢𝑘 𝑍

where the primary goal is to estimate the corresponding intensity . We note that  implicitly depends 𝑐𝑘 𝑍

on the model parameters , whose optimal values are found by solving the non-linear problem of fitting 𝜃𝑘

the model to the data. Likewise, zero- and first-order phasing parameters along with a polynomial baseline 

that define  are estimated during the same model fitting procedure and the experimental data are adjusted 𝜑

accordingly. Thus, given a fixed model matrix evaluated with the optimal parameters  and the optimally 𝜃𝑘

phased and baseline-corrected spectrum, Eq. S2 leads to an ordinary least squares problem with respect 

to the intensities . 𝑐𝑘

The observed NMR peaks for a given chemical species are the result of quantum transitions undergone 

by the spins system. The linewidth and frequency result from the separation of energy levels, and the rate 

of signal decay is related to the relaxation or exchange 3. The number and nature of P (Eq. S3) transition 

peaks are defined by the quantum mechanical (QM) properties of the spin system and the chemical 

structure, and in general can be expressed as some non-explicit function:

{𝜔𝑝𝑏𝑝𝛼𝑝} 𝑃
𝑃 = 1 = 𝑓𝑄𝑀(𝛿,𝐽,𝑟).#(𝑆3)



This function accounts for the shielding, and hence chemical shift of different nuclei , the set of mutual 𝛿

J-coupling constants , and possibly a relaxation model with rates  4, 5. Here we apply a simple isotropic 𝐽 𝑟

damping model for relaxation and assume that all nuclei in the same spin system relax with equal 

relaxation rates leading to peaks with the same width. For smaller spin systems with no more than 12-13 

coupled spins, evaluating   is achieved by diagonalization of the Hamiltonian operator 6. With 𝑓𝑄𝑀

knowledge of the aforementioned quantum properties of the spin system, peak positions , peak 𝜔

intensities  and relaxation rates , completely define the reference component spectra in Eq. S2 as 𝑏 𝛼

collections of corresponding Lorentzian peaks.

Although the peaks of an NMR spectrum relate to a chemical species, variations in experimental 

conditions, such as pH, can cause peaks to shift in frequency. Fortunately, these shifts will often act 

uniformly for groups of molecules, as was found to be the case for sugars 6, and as such movements can 

be accounted for in the QM model by shifting  by the same amount. Hence, the QM models can be 𝜔

computed for fixed values of chemical shifts and the resulting response is shifted accordingly to fit the 

observations. Furthermore, any increase in linewidths due to magnetic field inhomogeneity can also be 

corrected with high level parameter adjustment of the Lorentzian broadening rate .𝛼

The proposed method, including the evaluation and fitting of QM models, was implemented in Python 

3.5. Model parameters were optimized using the SciPy implementation of the L-BFGS-B algorithm with 

basin-hopping 7. Component intensities are reported as their respective mole fractions . 
�̂�𝑘 =  

�̂�𝑘 ∑
𝑘

�̂�𝑘

Uncertainty in each concentration is estimated to be 0.1 mol/mol based on previous measurements of ±

sugar solutions. We report results as mass fractions, determined using the molecular mass of each fraction. 

This is trivial in most instances but for maltose and higher weight isomers this result is likely marginally 

inaccurate. 
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