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Fig. S1 Time-resolved fluorescence decay curve of N-CDs and N-CDs+Hg2+.

Fig. S2 Zeta potential value of N-CDs and N-CDs+Hg2+.
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Fig. S3 I351 and I387 value of N-CDs changes with concentrations of Hg2+.

Fig. S4 FTIR spectra of N-CDs and N-CDs+Hg2+.
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Fig. S5 I387/I351 values for interference ions (50 μM) mixture with N-CDs.

Fig. S6 (a) XPS spectra, (b) XPS C1s spectra, (c) XPS N1s spectra, (d) XPS O1s spectra of N-CDs (upper spectra) 

and N-CDs+Hg2+ (nether spectra).
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Fig. S7 (a) TEM image, (b) Particle size distribution analysis of N-CDs+Hg2+.
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Fig. S8 Plot of IP2/IP1 versus the water content in ethanol, where P2 and P1 is the fluorescence 
emission peak around 387 nm and 351 nm, respectively.


