Tea derived carbon dots with two ratiometric fluorescence channels for independent detection of Hg^{2+} and H_2O

Chuanlu Ding^a, Hao Xing^a, Xuhong Guo^{a,b}, Huihui Yuan^c, Cuihua Li^{*,a}, Xiulan Zhang^{*,a}, Xin Jia^{*,a}

^a School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, People's Republic of China

^b State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China

^c Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

E-mail: <u>xl_zhang@shzu.edu.cn</u> (X. Zhang); jiaxin@shzu.edu.cn (X. Jia); lich@shzu.edu.cn (C. Li)

Fig. S1 Time-resolved fluorescence decay curve of N-CDs and N-CDs+ Hg^{2+} .

Fig. S2 Zeta potential value of N-CDs and N-CDs+ Hg^{2+} .

Fig. S3 I_{351} and I_{387} value of N-CDs changes with concentrations of Hg²⁺.

Fig. S4 FTIR spectra of N-CDs and N-CDs+Hg²⁺.

Fig. S5 I_{387}/I_{351} values for interference ions (50 $\mu M)$ mixture with N-CDs.

Fig. S6 (a) XPS spectra, (b) XPS C1s spectra, (c) XPS N1s spectra, (d) XPS O1s spectra of N-CDs (upper spectra) and N-CDs+Hg²⁺ (nether spectra).

Fig. S7 (a) TEM image, (b) Particle size distribution analysis of $N-CDs+Hg^{2+}$.

Fig. S8 Plot of I_{P2}/I_{P1} versus the water content in ethanol, where P2 and P1 is the fluorescence emission peak around 387 nm and 351 nm, respectively.