| 1  | Supporting Information                                                                                                                                                       |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                                                              |
| 3  | Label-free Colorimetric Aptasensor for Detection of Escherichia coli Based on Gold                                                                                           |
| 4  | Nanoparticles with Peroxidase-like Amplification                                                                                                                             |
| 5  | Mengyue Liu <sup>a, b, c</sup> , Fengjuan Zhang <sup>a, b, c</sup> , Shouyi Dou <sup>a, b, c</sup> , Jiashuai Sun <sup>a, b, c</sup> , Frank Vriesekoop <sup>d</sup> , Falan |
| 6  | Li <sup>a, b, c</sup> , Yemin Guo <sup>a, b, c*</sup> , Xia Sun <sup>a, b, c, **</sup>                                                                                       |
| 7  |                                                                                                                                                                              |
| 8  |                                                                                                                                                                              |
| 9  |                                                                                                                                                                              |
| 10 | <sup>a</sup> College of Agricultural Engineering and Food Science, Shandong University of Technology, No.                                                                    |
| 11 | 266 Xincun Xilu, Zibo, Shandong 255049, China.                                                                                                                               |
| 12 | <sup>b</sup> Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability,                                                                   |
| 13 | No. 266 Xincun Xilu, Zibo, Shandong 255049, China.                                                                                                                           |
| 14 | <sup>c</sup> Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo,                                                                |
| 15 | Shandong 255049, China.                                                                                                                                                      |
| 16 | <sup>d</sup> Department of Food, Land and Agribusiness Management, Harper Adams University, Newport,                                                                         |
| 17 | United Kingdom.                                                                                                                                                              |
| 18 |                                                                                                                                                                              |
| 19 |                                                                                                                                                                              |
| 20 | Corresponding author:                                                                                                                                                        |
| 21 | Professor Xia Sun; Tel: +86-533-2786558; E-mail address: sunxia2151@sina.com.                                                                                                |
| 22 | Professor Yemin Guo; Tel: +86-533-2786558; E-mail address: gym@sdut.edu.cn.                                                                                                  |





## 32

Figure S3. Optimization of PCR conditions (A) Number of cycles; (B) Annealing temperature;34



35 36 37

Figure S4. Secondary structures of sequences





Figure S5. Spectrum and color image of TMB-AuNPs



| Selection<br>round | ssDNA<br>(nmol) | Concentration of<br>E.coli (CFU/mL) | counter<br>target<br>(CFU/mL) | Incubation time of ssDNA<br>library and targets (min) |
|--------------------|-----------------|-------------------------------------|-------------------------------|-------------------------------------------------------|
| 1                  | 250             | 10 <sup>5</sup>                     | -                             | 120                                                   |
| 2                  | 150             | 10 <sup>5</sup>                     | -                             | 90                                                    |
| 3                  | 150             | 10 <sup>5</sup>                     | -                             | 90                                                    |
| 4                  | 150             | 10 <sup>5</sup>                     | -                             | 90                                                    |
| 5                  | 100             | 10 <sup>5</sup>                     | -                             | 60                                                    |
| 6                  | 100             | 10 <sup>5</sup>                     | -                             | 60                                                    |
| 7                  | 100             | 10 <sup>5</sup>                     | -                             | 60                                                    |
| 8                  | 50              | 10 <sup>5</sup>                     | 10 <sup>5</sup>               | 40                                                    |
| 9                  | 50              | 10 <sup>5</sup>                     | -                             | 40                                                    |
| 10                 | 50              | 10 <sup>5</sup>                     | -                             | 40                                                    |
| 11                 | 50              | 10 <sup>5</sup>                     | -                             | 40                                                    |

| Table S2 The sequences from 5'-3' |                                                                                                  |  |  |  |  |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Name                              | Sequences 5'-3'                                                                                  |  |  |  |  |  |  |  |
| 1-9                               | TAATACGACTCACTATAGCAATCGTATTCGCCACACCGTCACCTTGGAACACTCGA<br>TGTTACTGCCAGGCATAGTGCACGCTACTTTGCTAA |  |  |  |  |  |  |  |
| 1-15                              | TAATACGACTCACTATAGCAATCGGTTCTACAAAGCACCGGGTTAATGCGTATCAT<br>GTCTCAGTAGCTTCCCAGTGCACGCTACTTTGCTAA |  |  |  |  |  |  |  |
| 1-21                              | TAATACGACTCACTATAGCAATCGGGGACTGGCCCTTACCCGCGAGGAACTCGCT<br>CCCCCGCCATCGTCGACAGTGCACGCTACTTTGCTAA |  |  |  |  |  |  |  |
|                                   |                                                                                                  |  |  |  |  |  |  |  |
|                                   |                                                                                                  |  |  |  |  |  |  |  |
|                                   |                                                                                                  |  |  |  |  |  |  |  |
|                                   |                                                                                                  |  |  |  |  |  |  |  |
|                                   |                                                                                                  |  |  |  |  |  |  |  |

## Table S1 The conditions for aptamers selection

| 73 | Table S3 Comparison of colorimetric methods for Escherichia coli detection |                                                                                                                              |                                                            |                                              |                                |              |  |  |  |
|----|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|--------------------------------|--------------|--|--|--|
|    | Analyte                                                                    | Strategy                                                                                                                     | Linear<br>range                                            | LOD                                          | Matrix                         | Ref          |  |  |  |
|    | Escherichia coli                                                           | based on bacterial inhibition of glucose oxidase-catalyzed reaction                                                          | 10 <sup>4</sup> -10 <sup>8</sup><br>CFU mL <sup>-1</sup>   | 7.48×10 <sup>3</sup><br>CFU mL <sup>-1</sup> | 1                              | [1]          |  |  |  |
|    | Escherichia coli                                                           | aptamers immobilized on nitrocellulose<br>membranes housed within a microfluidic<br>system and HRP-TMB color reaction        | /                                                          | 10 <sup>4</sup><br>CFU mL <sup>-1</sup>      | joint fluids                   | [2]          |  |  |  |
|    | <i>Escherichia coli</i><br>O157:H7                                         | dependent on the electrostatic interaction<br>between bacteria and negatively charged<br>AuNPs by adjusting the pH           | /                                                          | 4.4×10 <sup>7</sup><br>CFU mL <sup>-1</sup>  | /                              | [3]          |  |  |  |
|    | Escherichia coli                                                           | based on 4-mercaptophenylboronic acid functionalized AuNPs                                                                   | 10 <sup>4</sup> -10 <sup>7</sup><br>CFU mL <sup>-1</sup>   | 1.02×10 <sup>3</sup><br>CFU mL <sup>-1</sup> | tap water;<br>bottled<br>water | [4]          |  |  |  |
|    | Escherichia coli                                                           | using the peroxidase-like activity of chitosan-coated iron oxide magnetic nanoparticles                                      | 10²-10 <sup>6</sup><br>CFU mL <sup>−1</sup>                | 10 <sup>2</sup><br>CFU mL <sup>-1</sup>      | /                              | [5]          |  |  |  |
|    | <i>Escherichia coli</i><br>O157:H7                                         | based on label-free aptamers and AuNPs                                                                                       | /                                                          | 10⁵<br>CFU mL⁻¹                              | /                              | [6]          |  |  |  |
|    | Escherichia coli                                                           | through the capture of AuNPs by chimeric phages                                                                              | /                                                          | 10 <sup>2</sup><br>CFU mL <sup>-1</sup>      | /                              | [7]          |  |  |  |
|    | Escherichia coli                                                           | using a supramolecular enzyme-<br>nanoparticle                                                                               | /                                                          | 10 <sup>4</sup><br>CFU mL <sup>−1</sup>      | /                              | [8]          |  |  |  |
|    | Escherichia coli                                                           | based on the enzyme-induced metallization of gold nanorods                                                                   | /                                                          | 10 <sup>5</sup><br>CFU mL <sup>-1</sup>      | /                              | [9]          |  |  |  |
|    | Escherichia coli                                                           | using AuNPs with peroxidase-like activity to catalyze the oxidation of TMB by hydrogen peroxide to produce color development | 5×10 <sup>2</sup> -10 <sup>6</sup><br>CFU mL <sup>-1</sup> | 75<br>CFU mL⁻¹                               | water;<br>juice; milk          | this<br>work |  |  |  |
| 74 |                                                                            |                                                                                                                              |                                                            |                                              |                                |              |  |  |  |
| 75 |                                                                            |                                                                                                                              |                                                            |                                              |                                |              |  |  |  |
| 76 |                                                                            |                                                                                                                              |                                                            |                                              |                                |              |  |  |  |
| 70 |                                                                            |                                                                                                                              |                                                            |                                              |                                |              |  |  |  |
| 79 |                                                                            |                                                                                                                              |                                                            |                                              |                                |              |  |  |  |
| 80 |                                                                            |                                                                                                                              |                                                            |                                              |                                |              |  |  |  |
| 81 |                                                                            |                                                                                                                              |                                                            |                                              |                                |              |  |  |  |
| 82 |                                                                            |                                                                                                                              |                                                            |                                              |                                |              |  |  |  |
| 83 |                                                                            |                                                                                                                              |                                                            |                                              |                                |              |  |  |  |

## 84 **Reference**

- 85 1 J. Sun, J. Huang, Y. Li, J. Lv and X. Ding, *Talanta*, 2019, **197**, 304-309.
- 86 2 C. Wang, J. Wu and G. B. Lee, Sensor. Actuat. B-Chem., 2019, 284, 395-402.
- 87 3 J. Du, Z. Yu, Z. Hu, J. Chen, J. Zhao and Y. Bai, J. Microbiol. Meth., 2021, 180, 1-6.
- 4 J. Huang, J. Sun, A. R. Warden and X. Ding, Food Control, 2020, 108, 1-7.
- 89 5 T. N. Le, T. D. Tran and M. I. Kim, *Nanomaterials*, 2020, **10**, 1-11.
- 90 6 W. Wu, M. Li, Y. Wang, H. Ouyang, L. Wang, C. Li, Y. Cao, Q. Meng and J. Lu, Nanoscale Res.
- 91 Lett., 2012, 7, 658.
- 92 7 H. Peng and I. A. Chen, ACS Nano, 2019, 13, 1244-1252.
- 93 8 O. R. Miranda, X. Li, L. G. Gonzalez, Z. Zhu, B. Yan, U. H. F. Bunz and V. M. Rotello, J. Am. Chem.
- 94 Soc., 2011, **133**, 9650-9653.
- 95 9 J. Chen, A. A. Jackson, V. M. Rotello and S. R. Nugen, Small, 2016, 12, 2469-2475.