Miniaturized genotoxicity evaluation system for fast biomaterial-

related risk assessment

Varvara Gribova, *^{a,b} Jesus Manuel Antunez Dominguez,^c Alan Morin,^c Julia Sepulveda Diaz,^c

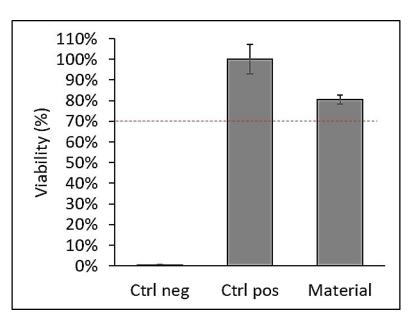
Philippe Lavalle,^{*a,b,d*} and Nihal Engin Vrana*^{*d*}

^aINSERM UMR 1121, Biomaterials and Bioengineering, 1 rue Eugène Boeckel, FR-67000
Strasbourg, France
^bUniversité de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l'Hôpital, FR-67000
Strasbourg, France
^cElvesys, 172 Rue de Charonne, FR-75011 Paris, France
^dSPARTHA Medical, 1 Rue Eugène Boeckel, FR-67000 Strasbourg, France

*Corresponding authors

Table S1. Detailed procedure of genotoxicity assay in microfluidic chip.

	1. Fill the chip with agar in the designated wells.
Microfluidic	2. Leave the agar in the chip so as to cool down until agar is solid and at room
chip	temperature for 5 minutes.
preparation	3. Pierce the adhesive film with a 1.5 mm diameter biopsy puncher in the
	position of reservoir inlet, VIs, Vos, and waste outlet.
	4. Stick the adhesive from one end of the chip to the other.
	5a. Pipette 150 μ L of bacterial suspension + PBS (in the proportion of Table 1)
	into the reservoir through the microfluidic chip inlet.
	6a. Load the MCs with 10 μ Lof sample, negative and positive control through the
	corresponding VOs using a pipette. Do not let the injected liquid reach the exit
	of the mixing chamber to enable air circulation until bacterial solution flows in.
	7a. Place A flexible EPDM rubber mat (or alternatively some fitting O-rings) on
	top of the chip and valves for air-tight connection. Such components are placed
	using double-sided pressure tapes. The mat and tape should also be pierced into
	the VIs and VOs positions.
	8a. Place the luer connectors in the inlet and outlet of the chip using pierced
	double pressure tape.
Const	9a. Attach the valves to the rubber mat with double-sided pressure tape in the
Semi-	right position. Orientation of the valves is not crucial as they act as a switch
automated	(open or close position).
sequence	10a. Connect the valves to the valve controller.
	11a. Connect and empty container into the pressure source and then to the chip
	using the tubing of choice, as the chip is completely loaded, with no liquid will in
	circulation through it.
	12a. Connect another empty container as waste to the outlet to enable air
	circulation without bacterial suspension spilling. Still, the waste chamber is
	designed to contain all the liquid, whereas it it can be evacuated in the drying
	steps.
	13a. At the beginning, all the valves are closed, and a pressure of 10mbar is
	applied. First, the bacterial suspension is pushed individually to each of the mixing
	chambers until it is full, whereas the liquid has not reached the agar wells.
	Therefore, the reagents have time to mix.


14a. Apply a pressure of a pressure of 10 mbar with all valves closed. One at a		
time, open each valve and push bacterial suspension into each of the MCs until		
they are full, though the liquid has not reached yet the agar wells. Therefore,		
the reagents have time to mix.		
15a. Make sure all the valves are in the closed position.		
16a. One at a time, open the valves 110 seconds until the liquid fills completely		
the three AWs in the circuit line.		
17a. Make sure all the valves are in the closed position again.		
18a. Let the bacteria sediment inside the chip for as long as needed, in this case,		
2 hours.		
19a. Open all the valves at the same time and activate the pressure source at		
the same pressure in order to evacuate all liquid into the waste chamber. If		
desired, the liquid waste can be safely disposed of by flowing it to the waste		
container through the outlet.		
20a. Activate the pressure again to help the drying process. A pressure of 200		
mbar for 5 min is recommended, at least until no liquid is visible in the agar		
wells.		
21a. Incubate the chip for 24 hours. In case an incubator is needed, luer		
connections to the chip and valve connections to the valve controller are		
removed. The chip attached to the valves can then be transported and placed		
inside. To ensure safe handling, the inlet and outlet are sealed with adhesive		
tape.		
22a. Take off the seals and repeat the step 5a for the staining process, this time		
loading the reservoir with dye.		
23a. Reconnect the pressure source to the inlet and a waste container to the		
outlet.		
24a. Repeat steps 13a to 18a. Now the MCs are empty; their purpose is to		
distribute the right volume of liquid for each line, so there is no need to care for		
mixing.		
25a. Let the dye stain the bacteria and protect from light with aluminium foil as		
necessary.		
24a. Repeat steps 19a and 20a.		
26a. If washing is needed, fill the container connected to the pressure source		
(initially empty) with washing solution.		
27a. Repeat steps 19a and 20a, at 30mbar instead, now flowing the washing		

	solution, for at least 2 minutes.
	28a. Repeat steps 19a and 20a in order to let them dry. The chip is now ready
	for observation.
	5b. Load the MCs with 10 μ L of sample, negative and positive control through
	the corresponding VOs using a pipette.
	6b. Pipette 35 μ L of bacterial suspension + PBS into each of the MCs until full;
	then, mix by pushing back and forth the liquid between the pipette and the well.
	It is advised to push gently to avoid bubble formation.
	7b. Push each mixture separately into their respective AWs circuit lines by pushing
	air through the VOs. The liquid should be pushed as a constant and slow stream
	until all the wells are covered. Bubbles are avoided manually by adjusting speed
	or slightly backing the liquid front.
	8b. Let the bacteria sediment inside the chip for as long as needed, in this case,
	2 hours.
	9b. Extract the liquid from each of the lines using the pipette. Air can be pushed
Manual pipetting	with the pipette in order to dry the agar faster, then letting the chip dry until no
	liquid can be seen in the agar.
	10b. Incubate the chip for 24 hours. To ensure safe handling, the VOs and
	outlets are sealed with adhesive tape.
	11b. Remove adhesive tape from the VOs and outlets. Repeat step 7b by now
	injecting fluorescent dye.
	12b. Let the dye stain the bacteria and protect from light with aluminium foil, if
	necessary.
	13b. Repeat step 9b.
	14b. If washing is needed, repeat step 7b by now injecting washing solution.
	15b. Wash the wells by injecting fresh washing solution and extracting it
	consecutively. Gentle pipetting back and forth is recommended. This step is
	repeating for as many washing steps as recommended in the macroscopic
	protocol.
	16b. Repeat step 9b. The chip is now ready for observation.

Cytotoxicity test

CellTiter-Glo[®] Luminescent Cell Viability Assay (Promega, France) was used to confirm the biocompatibility of the resin used for the microfluidic chip elaboration. The experiment was based on ISO 10993-5 guidelines and performed on Balb/3T3 cells seeded in 12-well plates, 10⁵ cells per well, and grown for 24 hours at 37°C in High glucose Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin - streptomycin. The resin was cut into small pieces (0.753 +/- 0.039 cm²) and added to the cells for a direct contact assay. The cells were grown for 24 hours in presence of resin, then CellTiter-Glo[®] experiment was performed according to manufacturer's instructions. Briefly, the plate containing the cells, DMEM-FBS medium and CellTiter-Glo[®] reagent were equilibrated at the room temperature, then cell culture medium was replaced by a mixture of DMEM-FBS and CellTiter-Glo[®] (50/50 v/v), and luminescence was measured using SAFAS spectrofluorometer (Monaco). The results are expressed as percentage of positive control (untreated cells, 100% viability). Each condition was performed in triplicate.

The results show that cell viability in presence of the resin was equal to 80%, indicating that the material is biocompatible, according to ISO 10993-5 (cell viability above 70%). Some decrease in viability is certainly due to the fact that the material slightly damaged the cell layer (mechanical damage).

Figure S1. Cell viability measured using CellTiter-Glo[®] Luminescent Cell Viability Assay on Balb/3T3 cells. Each condition was performed in triplicate, and the values correspond to the averages +/- SD.