Electronic Supplementary Information

CuO nanoleaves and β -cyclodextrin functionalized reduced graphene oxide: A highly selective and sensitive electrochemical sensor for the simultaneous detection of 2-chlorophenol and 2, 4-dichlorophenol

Umme Solaem Akond^a, Abhinandan Mahanta^a and Sk. Jasimuddin^a*

Department of Chemistry, Assam University, Silchar, Assam-788011, India

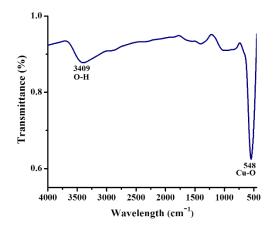


Fig. S1 FTIR spectra of CuO nanoleaves

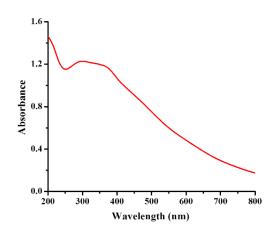
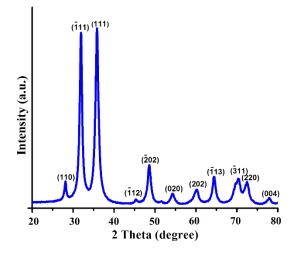
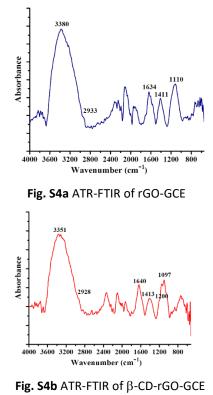
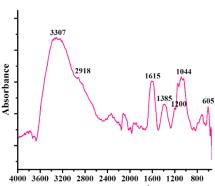
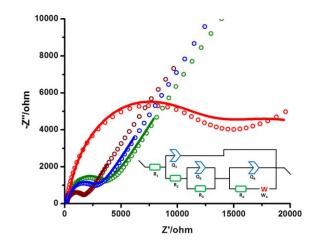
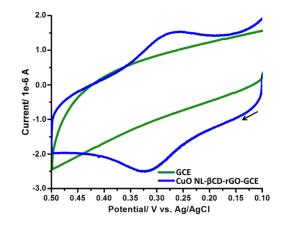


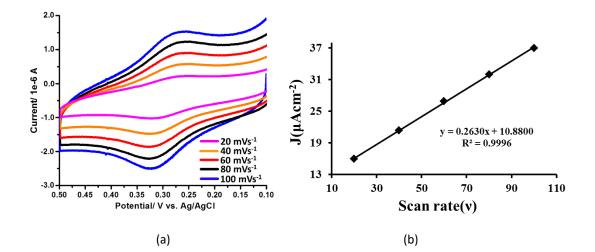
Fig. S2 UV-visible spectra of CuO nanoleaves in aqueous solution


Fig. S3 X-ray diffraction pattern of CuO NLs.



Wavenumber (cm⁻¹)


Fig. S4c ATR-FTIR of CuO- β -CD-rGO-GCE

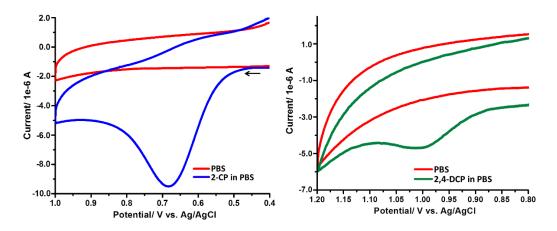


Fig. S5 Overlaid Nyquist plots (-Z"*versus Z'*, E_{ac} = 10 mV, frequency range: 0.01-100000 Hz) of 0.5 mM K₄[Fe(CN)₆] in 0.1 M PBS (pH 7.0) at GCE (green curve), rGO-GCE (brown curve), β -CD-rGO-GCE (red curve) and CuO NLs- β -CD-rGO-GCE (blue curve). Data points are experimental while the solid lines are the fitted lines (Inset: Randles equivalent circuit used to fit the EIS data)

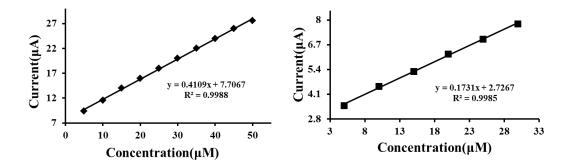

Fig. S6 Cyclic voltammograms obtained at bare and CuO NLs-β-CD-rGO modified GCE in 0.1 m PBS (pH 7.0).

Fig. S7 Overlaid cyclic voltammograms obtained with increasing scan rate at CuO NLs- β -CD-rGO-GCE in 0.1 m PBS (pH 7.0)(a); A plot of current density (J) *versus* scan rate (v) (b).

Fig. S8 Overlaid CVs for 0.1 M PBS (red curve) and 10 μ M 2-CP in 0.1 M PBS (pH 6.0) (blue curve) (a); Overlaid CVs for 0.1 M PBS (red curve) and 10 μ M 2,4-DCP in 0.1 M PBS (pH 6.0) (green curve) (b).

Fig. S9 A plot of current as a function of concentration of 2-CP with linear trend line (R^2 > 0.99) (a); A plot of current as a function of concentration of 2,4-DCP with linear trend line (R^2 > 0.99)(b).

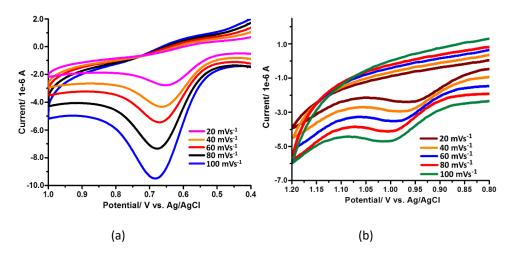


Fig. S10 CVs of 10 μ M 2-CP (a) and 10 μ M 2,4-DCP (b) in 0.1 M PBS (pH 6.0) at different scan rate (20-100 mVs⁻¹) using CuO NLs- β -CD-rGO-GCE.

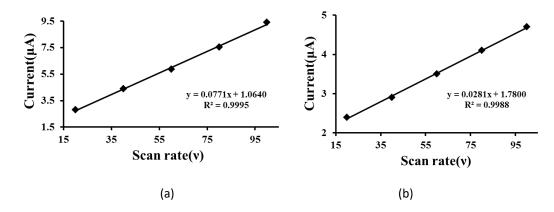


Fig. S11 Plot of oxidation peak current of 10 μ M 2-CP (a) and 10 μ M 2,4-DCP (b)*versus* scan rate.

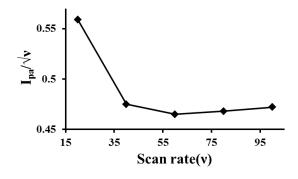


Fig. S12 A plot of scan rate -normalized current versus scan rate

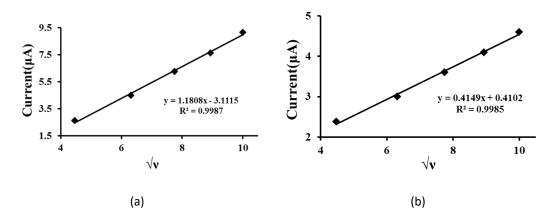


Fig. S13 Plot of oxidation peak current of 10 μM 2-CP (a) and 10 μM 2,4-DCP (b) versus square root of scan rate.

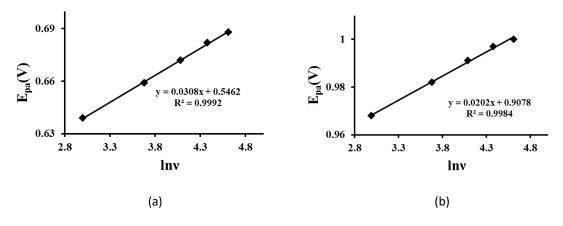


Fig. S14 Plot of E_{pa} versus Inv for 2-CP (a) and 2,4-DCP (b)

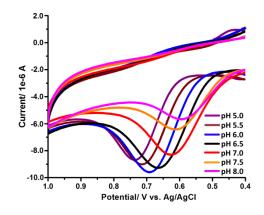


Fig. S15 Overlaid CVs of 10 μM 2-CP at different pH using CuO NLs- β -CD-rGO-GCE.



Fig. S16 Overlaid CVs of 10 μ M 2,4-DCP at different pH using CuO NLs- β -CD-rGO-GCE.

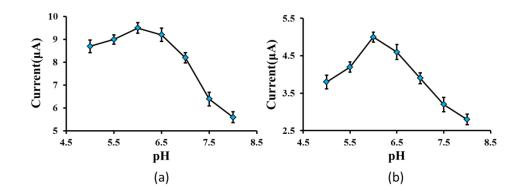
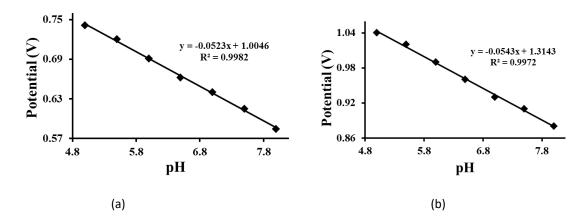
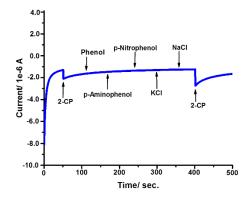
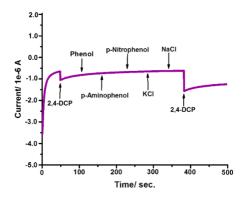


Fig. S17 Plot of oxidation peak current of 10 μ M 2-CP (a) and 2,4-DCP (b) versus pH at CuO NLs- β -CD-rGO-GCE in 0.1 M PBS.

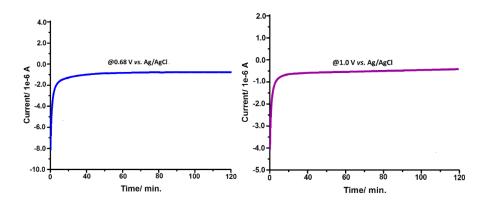

Fig. S18 Plot of oxidation peak potential of 10 μ M 2-CP *versus* pH (a); Plot of oxidation peak potential of 10 μ M 2,4-DCP *versus* pH (b).

Fig. S19 Amperometric response at CuO NLs- β -CD-rGO-GCE with an applied potential of 0.68 V on subsequent addition of 10 μ M 2-CP, 50 μ M phenol, 50 μ M p-aminophenol, 50 μ M p-nitrophenol, 50 μ M KCl, 50 μ M NaCl and 10 μ M 2-CP under stirring condition in 0.1 M PBS (pH 6.0).

Fig. S20 Amperometric response at CuO NLs- β -CD-rGO-GCE with an applied potential of 1.0 V on subsequent addition of 10 μ M 2,4-DCP, 50 μ M phenol, 50 μ M p-aminophenol, 50 μ M p-nitrophenol, 50 μ M KCl, 50 μ M NaCl and 10 μ M 2,4-DCP under stirring condition in 0.1 M PBS (pH 6.0).

Fig. S21 Chronoamperogram obtained by using CuO NLs- β -CD-rGO-GCE at an applied potential 0.68 V and 1.0 V in the presence of 10 μ M 2-CP (a) and 10 μ M 2,4-DCP (b), respectively in 0.1 m PBS (pH 6.0).

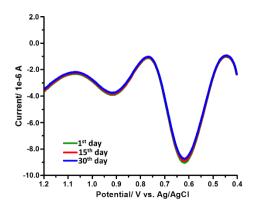


Fig. S22 Overlaid DPVs of a mixed solution of 5 μ M 2-CP and 5 μ M 2,4-DCP in 0.1 M PBS (pH 6.0) obtained by using the CuO NLs- β -CD-rGO-GCE (DPVs were taken fifteen days interval and the electrode was kept by covering a Teflon cap when not in use).

River water ^a	Spiked (µM)	Found(µM)	RSD (%) (n = 5)	Recovery (%)
2-CP	0	Not detected	-	_
	1.5	1.48	1.01	98.67
	2	2.03	1.03	101.50
2,4-DCP	0	Not detected	-	-
	1.5	1.43	0.99	95
	2	1.96	1.10	98

 Table S1 Simultaneously analysis of 2-CP and 2,4-DCP in spiked water sample

^a Obtained from The Brahmaputra River