Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2023

A flexible and sensitive electrochemical sensing platform based on dimethyl sulfoxide modified carbon cloth: towards the detection of dopamine and carvedilol

Neermunda Shabana^{a,b}, Ajith Mohan Arjun^a, Menon Ankitha^b, Sabarija A Mohandas^c, Praveena Gangadharan^{c,d}, Pathath Abdul Rasheed^{a,b}*

^aDepartment of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, India-678 557

^bDepartment of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, India-678 557

^c Department of Civil Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, India-678 557

^d Environmental Sciences and Sustainable Engineering Center, Indian Institute of Technology, Palakkad, Kerala

*abdulrasheed@iitpkd.ac.in (PAR)

Supporting Information

Fig. S1. SEM images of a) bare CC b) CC-DMSO

Fig. S2. The EDS spectra with elemental analysis of (a) CC and (b) CC-DMSO.

	Bare CC		CC-DMSO	
Element	Atomic conc (%)	Mass conc (%)	Atomic conc (%)	Mass conc (%)
C 1s	95.66	94.30	93.86	91.90
O 1s	4.30	5.70	5.25	6.88
S 2p	0	0	0.89	1.22

Table S1. The XPS elemental analysis of bare CC and CC-DMSO

Fig. S3. CV responses of CC-DMSO with varying DMSO modification time in 0.1 M PBS with a scan rate of 100 mV/s.

Fig. S4(a) The effect of scan rate of CC-DMSO in presence of 100 μ M CAR and (a') its calibration plot. (b) The effect of scan rate of CC-DMSO in presence of 100 μ M DA and (b') its calibration plot.

Fig. S5 (a) The CV of (a) bare CC and (b) DMSO-CC at different scan rates. (c) calibration plot of change in current density vs scan rate for CC and DMSO-CC.

Fig. S6(a) The chronoamperometric response of unmodified CC at a potential of 0.74 V with varying the concentration of CAR and (a') the calibration plot between peak current (at 6 s) vs logarithmic concentration of CAR. (b) The chronoamperometric response of unmodified CC at a potential of 0.18 V with varying the concentration of DA and (b') the calibration plot between peak current (at 6 s) vs logarithmic concentration of DA.

Fig S7. The repeatability of CC-DMSO sensor towards (a) CA detection (b) DA detection.

Fig. S8. The reproducability of CC-DMSO sensor towards (a) CAR detection (b) DA detection.

Fig S9. The chronoamperometric response of CC-DMSO after 10 days of storage at 4 °C in comparison with initial value for (a) CAR detection (b) DA detection.